Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Смешанное произведение трех векторов





 

Смешанным произведением трех векторов называется произведение, которое получается скалярным умножением векторного произведения двух векторов на третий вектор, то есть произведение вида или иначе .

Свойства смешанного произведения

1. = .

2. .

3. .

4. .

Если три вектора заданы своими координатами в ортонормированном базисе как , то

.

 

Применение смешанного произведения

1. Объем параллелепипеда, построенного на векторах , Vпарал.=| |.

2. Объем пирамиды, построенной на векторах , Vпир.= | |.

3. Условие компланарности трех векторов =0.

___________

 

2.4.1. Найти объем пирамиды, вершинами которой служат точки А(1; 2; 3); В(0; -1; 1); С(2; 5; 2); Д(3; 0; -2).

Ответ: 4.

2.4.2. Найти объем параллелепипеда, построенного на векторах .

Ответ: 24.

2.4.3. Доказать, что векторы компланарны.
Ответ:

2.4.4. Доказать, что точки А(2; -1; -2); В(1; 2; 1); С(2; 3; 0); Д(5; 0; 6) лежат в одной плоскости.

Ответ: не лежат.

_______________

 

2.4.5. Задана пирамида с координатами своих вершин: А(2; 0; 0); В(0; 3; 0); С(0; 0; 6) и Д(2; 3; 8). Вычислить ее объем и высоту, опущенную на грань АВС.

Ответ: 14; .

2.4.6. Найти объем параллелепипеда, построенного на векторах .

Ответ: 51.

2.4.7. Проверить компланарность векторов .

Ответ: компланарны.







Дата добавления: 2014-10-22; просмотров: 745. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия