Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая линия на плоскости





 

Уравнением линии на плоскости ХОУ называется такое уравнение F(x, y)=0 с двумя переменными, которому удовлетворяют координаты х и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на линии.

Переменные х и у в уравнении линии называются текущими координатами точек линии.

Простейшей из линий является прямая.

Разным способам задания прямой соответствуют в прямоугольной системе координат различные виды ее уравнений (табл. 1).

Таблица 1

№ п/п Вид уравнения Смысл входящих в уравнение коэффициентов Примечания
  Уравнение с угловым коэффициентом y=kx+b k – тангенс угла a наклона прямой к положительному направлению оси ОХ; b – отрезок, отсекаемый прямой от оси ОY a≠ π /2
  Общее уравнение прямой Ах+Ву+С=0 А, В – координаты вектора, перпендикулярного прямой (нормального вектора) N. А, В не равны нулю одновременно
  Уравнение прямой, про-ходящей через данную точку в данном направ-лении у-у0=k(х-х0) т.М(х0, у0) – заданная точка; k – угловой коэффициент прямой При различных k уравнение называется уравнением пучка прямых с центром в точке М(х0, у0)
  Уравнение прямой, проходящей через две заданные точки т.М1(х 1, у 1), т.М2(х 2, у 2) – заданные точки  
  Уравнение прямой в отрезках на осях х .   а, b – отрезки, отсекаемые прямой от координатных осей ОХ и ОY соответственно а ≠ 0, b ≠ 0
  Уравнение прямой, проходящей через заданную точку параллельно заданному вектору     т.М0(х 0, у 0) – заданная точка; m, n – координаты вектора, параллельного искомой прямой (направляющего век-тора) Такое уравнение часто называют каноническим
№ п/п Вид уравнения Смысл входящих в уравнение коэффициентов Примечания
  Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору А(х-х 0)+В(у-у 0)=0 т.М0(х 0, у 0) – заданная точка, А, В – координаты нормального вектора искомой прямой  

 







Дата добавления: 2014-10-22; просмотров: 820. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия