Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кривые второго порядка на плоскости





 

Уравнение вида А х 2+2В хуу 2+2D х +2Е у +F=0 называется общим уравнением кривой второго порядка. Коэффициенты уравнения – действительные числа, причем хотя бы одно из чисел А, В, С отлично от нуля. Такое уравнение определяет на плоскости окружность, эллипс, гиперболу или параболу.

В табл. 3 приведены уравнения кривых второго порядка и определен смысл входящих в них коэффициентов.

 

Таблица 3

№ п/п Определение кривой Вид уравнения Примечание
  Эллипс – множество всех точек плоскости, сумма расстояний от которых до двух точек, называемых фокусами, есть величина постоянная (рис.2)     - каноническое уравнение эллипса 2 а – большая ось; 2 b – малая ось 2 с –межфокус-ное; расстояние с22-b2; - эксцентриси-тет, 0< e < 1. Т. А1, А2, В1, В2 – вершины эллипса
№ п/п Определение кривой Вид уравнения Примечание
  Гипербола – множество точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек, называемых фокусами, есть величина постоянная (рис.3) - каноническое уравнение гиперболы 2 а –действи-тельная ось; 2 b –мнимая ось; 2 с –меж-фокусное расстояние с22+b2; - эксцентри-ситет, e > 1. Точки А1, А2 – вершины гиперболы. Прямые - асимптоты
3. Парабола - множество точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой.   у 2=2 px – каноническое уравнение параболы, симметричной относительно оси ОХ     x2 =2 – каноническое уравнение параболы, симметричной относительно оси ОY (рис.4б) F - фокус, ди-ректриса. Точка (0; 0) – вершина параболы (рис.3а)   F - фокус, ди-ректриса. Точка (0; 0) – вершина параболы (рис.4б)

 

______________

 

3.2.1. Найти координаты фокусов и эксцентриситет эллипса . Построить эллипс.

Ответ: ±3; 0; 0, 6.

3.2.2. Составить каноническое уравнение эллипса, у которого а) большая полуось равна 10, эксцентриситет равен 0, 8; б) малая полуось равна , расстояние между фокусами равно 8.

Ответ: ; .

3.2.3. Эллипс, симметричный относительно осей координат, проходит через точки М(2; ) и В(0; 2). Написать его уравнение. Построить кривую.

Ответ: .

3.2.4. Построить гиперболу х 2-4 у 2=16 и ее асимптоты. Найти фокусы, эксцентриситет, угол между асимптотами.

Ответ: .

3.2.5. Написать каноническое уравнение гиперболы, зная, что: а) расстояние между фокусами равно 10, между вершинами равно 8; б) вещественная полуось равна , эксцентриситет равен .

Ответ:

3.2.6. Написать уравнение гиперболы, имеющей вершины в фокусах, а фокусы – в вершинах эллипса .

Ответ: .

3.2.7. Написать уравнения прямых, проходящих через левую вершину гиперболы 1 а) параллельно прямой 3 х -2 у +6=0; б) перпендикулярно асимптоте, образующей острый угол с осью ОХ.

Ответ: а)3 х -2 у +6Ö 5=0, б) .

3.2.8. Парабола с вершиной в начале координат проходит через точку А(2; 4) и симметрична относительно оси ОХ. Написать ее уравнение.

Ответ: у 2=8 х.

3.2.9. Написать каноническое уравнение эллипса, зная, что его большая полуось а =12, эксцентриситет равен 0, 5. Найти расстояние между фокусами.

Ответ: ; 2 с =12.

3.2.10. Определить полуоси, координаты фокусов, эксцентриситет эллипса 3 х 2+4 у 2-12=0.

Ответ: а =2; b =Ö 3; с =1; e =0, 5.

3.2.11. Написать уравнение прямой, проходящей через нижний правый фокус эллипса под углом 45° к оси ОХ.

Ответ: у = х -3.

3.2.12. Определить фокусы, вершины, эксцентриситет и асимптоты гиперболы . Сделать эскиз.

Ответ: F1(0; -5); F2(0; 5), .

3.2.13. Написать каноническое уравнение гиперболы, проходящей через точки А(2; 1), В(-4; Ö 7).

Ответ: .

3.2.14. Написать уравнение прямой, проходящей через левую вершину гиперболы и отсекающую от оси ОY отрезок 5 единиц.

Ответ: .

3.2.15. Парабола с вершиной в начале координат проходит через точку А(1; -2) и симметрична относительно оси ОY. Написать уравнение параболы, найти координаты фокуса и уравнение директрисы.

Ответ: у = -2 х 2; F(0; -1/8); у =1/8.

 







Дата добавления: 2014-10-22; просмотров: 1926. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия