Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плоскость в пространстве





 

Любое уравнение первой степени в трехмерном пространстве определяет какую-либо плоскость.

Разным способам задания плоскости соответствуют различные виды уравнений (табл. 4.)

Таблица 4

№ п/п Вид уравнения Смысл входящих в уравнение коэффициентов Примечание
  Уравнение плоскости, проходя-щей через данную точку пер-пендикулярно заданному век-тору А(х-х 0)+В(у-у 0)+С(z-z 0)=0 (x 0, y 0, z 0) – координаты заданной точки; АВС – координаты заданного вектора Вектор N(А, В, С) называется нормальным векторомплоскости
  Общее уравнение плоскости А хуz +D=0 D=-A x 0-B y 0-C z 0, АВС – нормальный вектор плоскости; х 0, y 0, z 0 – координаты данной точки Это уравнение получается из уравнения (1) эле-ментарными преобразованиями
  Уравнение плоскости, проходя-щей через три заданные точки М1(х 1, y 1, z 1), М2(х 2, y 2, z 2), М3(х 3, y 3, z 3) – три точки, заданные своими координатами Точки М1, М2, М3 не должны лежать на одной прямой
  Уравнение плоскости в отрезках на осях а, b, c – отрезки, отсекаемые плоскостью от осей координат аbc ≠ 0

 

Пусть даны две плоскости a1 и a2:

a1: А1 х1 у1 z +D1=0,

a2: А2 х2 у2 z +D2=0.

 

Угол между двумя плоскостями определяется как .

Условие перпендикулярности двух плоскостей:

=0, то есть =0.

Условие параллельности двух плоскостей:

или .

Расстояние от точки до плоскости:

,

где А хуz +D=0 – заданная плоскость; М(x 0, y 0, z 0) – данная точка.

_________________

 

3.4.1. Написать уравнение плоскости, проходящей через точку М(-1; 2; 3) перпендикулярно вектору .

Ответ: х -2 у -3 z +14=0.

3.4.2. Написать уравнение плоскости, проходящей через точки М1(2; 3; -1), М2(1; 5; 3) перпендикулярно плоскости 3 х - у +3 z +15=0.

Ответ: 2 х +3 у - z -14=0.

3.4.3. Написать уравнение плоскости, проходящей через точку М0(-2; 7; 3) параллельно плоскости х -4 у +5 z +1=0.

Ответ: х -4 у +5 z +15=0.

3.4.4. Написать уравнение плоскости, проходящей через точку М0(2; -3; 1) параллельно векторам .

Ответ: х + у - z +2=0.

3.4.5. Написать уравнение плоскости, проходящей через точку М0(2; 2; -2) перпендикулярно линии пересечения плоскостей 3 х -2 у - z +1=0 и х - у - z =0.

Ответ: х +2 у - z -8=0.

3.4.6. Написать уравнение плоскости, проходящей через точки М1(3; -1; 2), М2(4; -1; -1), М3(2; 0; 2).

Ответ: 3 х +3 у + z -8=0.

3.4.7. Написать уравнение плоскости, проходящей через ось ОZ и точку М0(1; -2; 1).

Ответ: 2 х + у =0.

3.4.8. Написать уравнение плоскости, проходящей через точку М0(2; 3; -4) параллельно плоскости YOZ.

Ответ: х -2=0.

3.4.9. Найти расстояние от точки М1(2; -1; -1) до плоскости 16 х- 12 у +15 z -4=0.

Ответ: 1.

3.4.10. Найти угол между плоскостями х + у -1=0 и 2 х - у + z +1=0.

Ответ: .

_______________

 

3.4.11. Даны точки М1(0; -1; 3), М2(1; 3; 5). Написать уравнение плоскости, проходящей через точку М1 перпендикулярно вектору .

Ответ: х+ 4 у +2 z -2=0.

3.4.12. Написать уравнение плоскости, проходящей через точки (0; -5; 0) и (0; 0; 2) перпендикулярно плоскости х+ 5 у +2 z -10=0.

Ответ: 2 у -5 z +10=0.

3.4.13. Написать уравнение плоскости, проходящей через точку М0(-2; 1; 4) параллельно плоскости 3 х+ 2 у -7 z +8=0.

Ответ: 3 х+ 2 у -7 z +32=0.

3.4.14. Написать уравнение плоскости, проходящей через точку М0(-2; 3; 6) перпендикулярно плоскостям 2 х+ 3 у -2 z -4=0, 3 х+ 5 у + z =0.

Ответ: 13 х- 8 у + z +44=0.

3.4.15. Написать уравнение плоскости, проходящей через три точки М1(1; -1; 0), М2(2; 1; -3), М3(-1; 0; 1).

Ответ: х + у + z =0.

3.4.16. Найти угол между плоскостями х+ 2 у -3 z +4=0, 2 х+ 3 у + z +8=0.

Ответ: .

3.4.17. Найти расстояние от точки М0(1; 3; -2) до плоскости 2 х- 3 у -4 z +12=0.

Ответ: .

 







Дата добавления: 2014-10-22; просмотров: 1773. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия