Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разрывы функции





 

Функция f(x) имеет разрыв в точке а, если она определена слева, и справа от точки а, но в точке а не выполняется хотя бы одно из условий непрерывности.

Различают два основных вида разрыва:

1. Разрывы I рода – а) оба односторонних предела существуют и конечны, но не равны между собой, то есть . Такой разрыв называется скачком; б) оба односторонних предела существуют, конечны, равны между собой, но не равны значению функции в точке а, то есть = f(x). Этот предел называется устранимым.

2. Разрыв II рода – хотя бы один из односторонних пределов равен ±∞.

_______________

 

4.2.1. Найти пределы следующих функций: а) ; б) ; в) ; г) .

Ответ: а) 7; б) 1; в) 1; г) 1.

4.2.2. Раскрыть неопределенность и вычислить пределы:

а) ; б) ; в) ; г) ;

д) ; е) .

Ответ: а) -6; б) 1; в) 1/2; г) ; д) 2; е) -1/2.

4.2.3. Раскрыть неопределенность и найти пределы:

а) ; б) ; в) ;

г) ; д) .

Ответ: а) 1/2; б) -5; в) 0; г) ∞; д) Ö 3.

4.2.4. Раскрыть неопределенности ∞ -∞ и 0∞:

а) ; б) ; в) ;

г) .

Ответ: а) 1, 5; б) 0, 5; в) 0; г) -2.

4.2.5. Вычислить пределы:

а) ; б) ; в) ; г) ;

д) ; е) ; ж) ;

з) .

Ответ: а) 4; б) 2; в) ; г) 1; д) -1/2; е) 2, 25; ж) 1; з) -8.

4.2.6. Найти пределы:

а) ; б) ; в) ; г) ;

д) ; ж) .

Ответ: а) е -5; б) е -1/3; в) е 4; г) е 2; д) е -2; ж) е 3.

4.2.7. Найти точки разрыва и построить графики функции:

а) ; б) ; в) ;

г) .

Ответ: а)II; б) II; в) II; г) I.

4.2.8. Подобрать значения a таким образом, чтобы функции были бы непрерывными:

а) ; б) .

Ответ: а) a=1; б) не сущ. такого a.

_________________

 

4.2.9. Найти пределы следующих функций:

а) ; б) .

Ответ: а) 6; б) 0.

4.2.10. Раскрыть неопределенность :

а) ; б) ; в) ;

г) .

Ответ: а) 2/5; б) 4/3; в) 1/20; г) 1, 6.

4.2.11. Раскрыть неопределенность :

а) ; б) ; в) ;

г) .

Ответ: а) -1/4; б) 2; в) ∞; г) 1/2.

4.2.12. Раскрыть неопределенности ∞ -∞ и 0∞:

а) ; б) ; в) ; г) .

Ответ: а)0; б)0; в)0; г)0.

4.2.13. Найти пределы:

а) ; б) ; в) ; г) .

Ответ: а) 1/3; б) 8; в) -Ö 2; г) 2/5.

4.2.14. Найти пределы:

а) ; б) ; в) ; г) .

Ответ: а) е 6; б) е -3/2; в) 1/ е 2; г) е.

4.2.15. Найти точки разрыва и построить графики функций:

а) ; б) ; в) ;

г) .

Ответ: а) II; б) I - устранимый; в) II; г) I – рода.

4.2.16. Найти a таким образом, чтобы следующие функции были непрерывными:

а) ; б) .

Ответ: а) a=2; б) a=16/π.

 







Дата добавления: 2014-10-22; просмотров: 741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия