Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разрывы функции





 

Функция f(x) имеет разрыв в точке а, если она определена слева, и справа от точки а, но в точке а не выполняется хотя бы одно из условий непрерывности.

Различают два основных вида разрыва:

1. Разрывы I рода – а) оба односторонних предела существуют и конечны, но не равны между собой, то есть . Такой разрыв называется скачком; б) оба односторонних предела существуют, конечны, равны между собой, но не равны значению функции в точке а, то есть = f(x). Этот предел называется устранимым.

2. Разрыв II рода – хотя бы один из односторонних пределов равен ±∞.

_______________

 

4.2.1. Найти пределы следующих функций: а) ; б) ; в) ; г) .

Ответ: а) 7; б) 1; в) 1; г) 1.

4.2.2. Раскрыть неопределенность и вычислить пределы:

а) ; б) ; в) ; г) ;

д) ; е) .

Ответ: а) -6; б) 1; в) 1/2; г) ; д) 2; е) -1/2.

4.2.3. Раскрыть неопределенность и найти пределы:

а) ; б) ; в) ;

г) ; д) .

Ответ: а) 1/2; б) -5; в) 0; г) ∞; д) Ö 3.

4.2.4. Раскрыть неопределенности ∞ -∞ и 0∞:

а) ; б) ; в) ;

г) .

Ответ: а) 1, 5; б) 0, 5; в) 0; г) -2.

4.2.5. Вычислить пределы:

а) ; б) ; в) ; г) ;

д) ; е) ; ж) ;

з) .

Ответ: а) 4; б) 2; в) ; г) 1; д) -1/2; е) 2, 25; ж) 1; з) -8.

4.2.6. Найти пределы:

а) ; б) ; в) ; г) ;

д) ; ж) .

Ответ: а) е -5; б) е -1/3; в) е 4; г) е 2; д) е -2; ж) е 3.

4.2.7. Найти точки разрыва и построить графики функции:

а) ; б) ; в) ;

г) .

Ответ: а)II; б) II; в) II; г) I.

4.2.8. Подобрать значения a таким образом, чтобы функции были бы непрерывными:

а) ; б) .

Ответ: а) a=1; б) не сущ. такого a.

_________________

 

4.2.9. Найти пределы следующих функций:

а) ; б) .

Ответ: а) 6; б) 0.

4.2.10. Раскрыть неопределенность :

а) ; б) ; в) ;

г) .

Ответ: а) 2/5; б) 4/3; в) 1/20; г) 1, 6.

4.2.11. Раскрыть неопределенность :

а) ; б) ; в) ;

г) .

Ответ: а) -1/4; б) 2; в) ∞; г) 1/2.

4.2.12. Раскрыть неопределенности ∞ -∞ и 0∞:

а) ; б) ; в) ; г) .

Ответ: а)0; б)0; в)0; г)0.

4.2.13. Найти пределы:

а) ; б) ; в) ; г) .

Ответ: а) 1/3; б) 8; в) -Ö 2; г) 2/5.

4.2.14. Найти пределы:

а) ; б) ; в) ; г) .

Ответ: а) е 6; б) е -3/2; в) 1/ е 2; г) е.

4.2.15. Найти точки разрыва и построить графики функций:

а) ; б) ; в) ;

г) .

Ответ: а) II; б) I - устранимый; в) II; г) I – рода.

4.2.16. Найти a таким образом, чтобы следующие функции были непрерывными:

а) ; б) .

Ответ: а) a=2; б) a=16/π.

 







Дата добавления: 2014-10-22; просмотров: 741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия