0, то кривая вогнутая, если y" < 0, то кривая выпуклая">Студопедия — Точки перегиба. Асимптоты
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точки перегиба. Асимптоты





 

Кривая называется выпуклой в точке х=х 0, если в некоторой окрестности этой точки кивая расположена под касательной, проведенной в этой точке (рис.6а), если же кривая лежит над касательной, то функция называется вогнутой (рис.6б).

В качестве достаточных условий выпуклости, вогнутости графика функций можно принять следующие: если y" > 0, то кривая вогнутая, если y" < 0, то кривая выпуклая.

Точкой перегиба называется точка, разделяющая интервал выпуклости от интервала вогнутости. Необходимым условием существования точки перегиба является равенство нулю второй производной от функции, достаточным – изменение знака второй производной при переходе через точку, подозрительную на точку перегиба.

Пусть имеется кривая, ветвь которой в том или ином направлении удаляется в бесконечность. Если расстояние от точки кривой до некоторой прямой по мере удаления точки кривой в бесконечность стремится к нулю, то эта прямая называется асимптотой графика кривой.

Существует три вида асимптот: вертикальная, горизонтальная, наклонная.

Пусть y=f(x), а – точка разрыва функции или граничная точка области определения.

Если , то прямая х=а есть вертикальная асимптота.

Если , то прямая х=b – горизонтальная асимптота.

Наклонная асимптота имеет вид у=kx+b, где ; .

Замечание. Пределы при х ®∞, х ®-∞ находятся отдельно.

 

Алгоритм полного исследования функции y=f(x)

 

1. Найти область определения функции; точки разрыва.

2. Найти асимптоты графика функции.

3. Определить четность, нечетность, периодичность функции.

4. Установить промежутки возрастания, убывания и экстремумы функции.

5. Определить интервалы выпуклости, вогнутости и точки перегиба графика функции.

6. Найти точки пересечения графика с осями координат.

7. При необходимости вычислить значения функции в дополнительных точках.

___________________

 

4.7.1. Найти промежутки выпуклости, вогнутости, точки перегиба:

а) у=х 5-5 х -6; б) у=(х- 5 ) 5/3+2;

в) у=хе х; г) у=х 4-8 х 3+24 х 2.

Ответ: а) (-∞; 0) – выпуклая; (0; ∞) – вогнутая;

б) р(5; 2) – точка перегиба;

в) (-∞; -2) – выпуклая; (-2; ∞) – вогнутая;

г) точек перегиба нет.

4.7.2. Найти асимптоты графика функций:

а) ; б) ;

в) ; г) y=-xarctgx.

Ответ: а) х =-2, у =3; б) х =1, х = -6, у =0; в) у=х -6;

г)

4.7.3. Исследовать функции и построить их графики:

а) ; б) ;

в) ; г) .

Ответ: а) у min(2)=3; асимптоты у = х, х =0;

б) у min(2Ö 3)=3Ö 3, у max(-2Ö 3)= -3Ö 3; (0; 0) – точка перегиба; х =±2, у=х – асимптоты;

в) у max(е 2)=2/ е, у =0 – асимптоты;

г) у max(1)= е.

4.7.4. Найти промежутки выпуклости, вогнутости, точки перегиба:

а) ; б) ;

в) y=ln|x|; г) .

Ответ: а) (2; -8/3); б) ; в) точек перегиба нет;

г) .

4.7.8. Найти асимптоты графиков функций:

а) ; б) y=x-arctgx;

в) .

Ответ: а) х= 0; у =1; б) ; в) у= 2 х; х =0.

4.7.9. Исследовать функции и построить графики:

а) ; б) .

Ответ: а) у=-х – наклонная асимптота; б) у min(6)=13, 5; (0; 0) – точка перегиба; х =2; у = х +4 – асимптоты.

 







Дата добавления: 2014-10-22; просмотров: 779. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия