Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точки перегиба. Асимптоты





 

Кривая называется выпуклой в точке х=х 0, если в некоторой окрестности этой точки кивая расположена под касательной, проведенной в этой точке (рис.6а), если же кривая лежит над касательной, то функция называется вогнутой (рис.6б).

В качестве достаточных условий выпуклости, вогнутости графика функций можно принять следующие: если y" > 0, то кривая вогнутая, если y" < 0, то кривая выпуклая.

Точкой перегиба называется точка, разделяющая интервал выпуклости от интервала вогнутости. Необходимым условием существования точки перегиба является равенство нулю второй производной от функции, достаточным – изменение знака второй производной при переходе через точку, подозрительную на точку перегиба.

Пусть имеется кривая, ветвь которой в том или ином направлении удаляется в бесконечность. Если расстояние от точки кривой до некоторой прямой по мере удаления точки кривой в бесконечность стремится к нулю, то эта прямая называется асимптотой графика кривой.

Существует три вида асимптот: вертикальная, горизонтальная, наклонная.

Пусть y=f(x), а – точка разрыва функции или граничная точка области определения.

Если , то прямая х=а есть вертикальная асимптота.

Если , то прямая х=b – горизонтальная асимптота.

Наклонная асимптота имеет вид у=kx+b, где ; .

Замечание. Пределы при х ®∞, х ®-∞ находятся отдельно.

 

Алгоритм полного исследования функции y=f(x)

 

1. Найти область определения функции; точки разрыва.

2. Найти асимптоты графика функции.

3. Определить четность, нечетность, периодичность функции.

4. Установить промежутки возрастания, убывания и экстремумы функции.

5. Определить интервалы выпуклости, вогнутости и точки перегиба графика функции.

6. Найти точки пересечения графика с осями координат.

7. При необходимости вычислить значения функции в дополнительных точках.

___________________

 

4.7.1. Найти промежутки выпуклости, вогнутости, точки перегиба:

а) у=х 5-5 х -6; б) у=(х- 5 ) 5/3+2;

в) у=хе х; г) у=х 4-8 х 3+24 х 2.

Ответ: а) (-∞; 0) – выпуклая; (0; ∞) – вогнутая;

б) р(5; 2) – точка перегиба;

в) (-∞; -2) – выпуклая; (-2; ∞) – вогнутая;

г) точек перегиба нет.

4.7.2. Найти асимптоты графика функций:

а) ; б) ;

в) ; г) y=-xarctgx.

Ответ: а) х =-2, у =3; б) х =1, х = -6, у =0; в) у=х -6;

г)

4.7.3. Исследовать функции и построить их графики:

а) ; б) ;

в) ; г) .

Ответ: а) у min(2)=3; асимптоты у = х, х =0;

б) у min(2Ö 3)=3Ö 3, у max(-2Ö 3)= -3Ö 3; (0; 0) – точка перегиба; х =±2, у=х – асимптоты;

в) у max(е 2)=2/ е, у =0 – асимптоты;

г) у max(1)= е.

4.7.4. Найти промежутки выпуклости, вогнутости, точки перегиба:

а) ; б) ;

в) y=ln|x|; г) .

Ответ: а) (2; -8/3); б) ; в) точек перегиба нет;

г) .

4.7.8. Найти асимптоты графиков функций:

а) ; б) y=x-arctgx;

в) .

Ответ: а) х= 0; у =1; б) ; в) у= 2 х; х =0.

4.7.9. Исследовать функции и построить графики:

а) ; б) .

Ответ: а) у=-х – наклонная асимптота; б) у min(6)=13, 5; (0; 0) – точка перегиба; х =2; у = х +4 – асимптоты.

 







Дата добавления: 2014-10-22; просмотров: 779. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия