Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

К) внутри тороида на произвольном расстоянии r от его центра





B = mm0nIR/r; H = nIR/r, (5.27)

где l = 2pr - длина оси тороида;

R – радиус тороида по средней линии;

r - радиус тороидального кольца;

I - сила тока;

N - число витков тороида;

n - число витков на единицу длины тороида.

Циркуляция вектора индукции магнитного поля по замкнутому контуру L (или просто циркуляцией вектора индукции магнитного поля) – физическая величина, определяемая линейным интегралом:

, (5.28)

где d l – вектор элементарной длины замкнутого контура, направленной вдоль обхода контура;

Bl = B× cosa - составляющая вектора B в направлении касательной к контуру (с учетом выбранного направления обхода);

a - угол между векторами B и d l.

Циркуляция вектора напряженности магнитного поля по замкнутому контуру L (или просто циркуляция вектора напряженности магнитного поля) - физическая величина, определяемая линейным интегралом:

, (5.29)

где d l – вектор элементарной длины замкнутого контура, направленной вдоль обхода контура;

Hl = H× cosa - составляющая вектора H в направлении касательной к контуру (с учетом выбранного направления обхода);

a - угол между векторами H и d l.

Закон полного тока (теорема о циркуляции индукции магнитного поля) в интегральной форме: циркуляция вектора индукции магнитного поля по замкнутому контуру L равна произведению mm0 на алгебраическую сумму токов, охватываемых контуром (направление обхода контура и направление тока должны быть связаны между собой правилом правого винта):

, (5.30)

где n – число проводников с токами, охватываемых контуром L произвольной формы.

Следствия из закона полного тока:

1) если направление обхода контура и направление тока в проводнике не связаны между собой правилом правого винта, то значение циркуляции вектора магнитной индукции, сохранив величину, изменит знак;

2) если контур, расположенный в магнитном поле, не охватывает ток или алгебраическая сумма токов внутри замкнутого контура равна нулю:

. (5.31)

Закон полного тока (теорема о циркуляции индукции магнитного поля) в дифференциальной форме справедлив для произвольных токов и контуров:

rot B =mm0 j. 5.32

Условие непотенциальности магнитного поля (вихревого характера магнитного поля):

. (5.33)

Поток магнитной индукции (магнитный поток) через площадку dS - физическая величина, численно равная произведению проекции B на направление положительной нормали n и величины этой площадки dS:

m=Bn× dS=B× dS× cosa, (5.34)

где a - угол между векторами Bиn;

Bn = B× cosa - проекция вектора B на направление положительной нормали к площадке dS.

Полный поток магнитной индукции через некоторую поверхность S

. (5.35)

Для однородного магнитного поля и плоской площадки S

Фm = Bn× S. (5.36)

Теорема Остроградского-Гаусса для магнитных полей:

. (5.37)

Индукция магнитного поля B в магнитной цепи, состоящей из стального сердечника с воздушным (вакуумным) зазором:

, (5.38)

где lc, lВ - соответственно длина стального и воздушного участков цепи;

mс, mВ - их магнитные проницаемости;

I - ток в обмотке цепи;

N - число витков обмотки.

Закон Ома для магнитных цепей:

, (5.38)

где I× N = Eм - магнитодвижущая сила;

Rмс = - магнитное сопротивление цепи сердечника;

Rмв = - магнитное сопротивление цепи воздушного зазора;

Rм = Rмс + Rмв - полное сопротивление магнитной цепи.

Законы (правила) Кирхгофа для магнитных цепей:

1. Первый: Алгебраическая сумма магнитных потоков в участках цепи, сходящихся в узле, равна нулю:

. (5.39)

Примечание: знак Фмi определяется направлением соответствующих линий B. Если линии вектора B сходятся в узле, Фмi - положителен, если они выходят из узла, Фмi - отрицателен.

2. Второй: В любом замкнутом магнитном контуре, произвольно выбранном в разветвленной магнитной цепи, алгебраическая сумма произведений магнитных потоков на магнитное сопротивление соответствующих участков цепи равна алгебраической сумме магнитодвижущих сил этого контура:

. (5.40)

При последовательном соединении магнитопроводов полное магнитное сопротивление равно сумме магнитных сопротивлений отдельных последовательно соединенных участков:

Rм = . (5.41)

При параллельном соединении величина, обратная сопротивлению разветвленной части магнитной цепи, равна сумме обратных величин магнитных сопротивлений отдельных ветвей:

. (5.42)

 

5.2. Силы, действующие на ток в электромагнитном поле

Сила, действующая в магнитном поле на элемент объема тела dV:

d F =e [ v ´ B ]∙ dN = n∙ e∙ [ v ´ B ]dV = [ j ´ B ]dV, (5.43)

где e- величина заряда электрона;

n - концентрация свободных электронов;

dN = n∙ dV - число заряженных частиц в объеме dV;

j= nev - плотность тока;

v - скорость направленного движения свободных электронов;

B - индукция магнитного поля.

Сила (сила Ампера), действующая на проводник с током в магнитном поле (закон Ампера):







Дата добавления: 2014-12-06; просмотров: 767. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия