Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аннуитет





Одним из ключевых понятий в финансовых расчетах является понятие аннуитета. Логика, заложенная в схему аннуитетных платежей, широко используется при оценке долговых и долевых ценных бумаг, в анализе инвестиционных проектов, а также в анализе аренды.

Аннуитет представляет собой частный случай денежного потока. Известны два подхода к его определению. Согласно первому подходу аннуитет представляет собой однонаправленный денежный поток, элементы которого имеют место через равные временные интервалы. Второй подход накладывает дополнительное ограничение, а именно: элементы денежного потока одинаковы по величине. В дальнейшем изложении материала мы будем придерживаться именно второго подхода. Если число равных временных интервалов ограничено, аннуитет называется срочным. В этом случае:

С1 = Сз =... = Сп = А.

Для оценки будущей и приведенной стоимости аннуитета можно пользоваться вышеприведенными формулами, вместе с тем благодаря специфике аннуитетов в отношении равенства денежных поступлений они могут быть существенно упрощены.

Формула для расчета текущей стоимости аннуитета имеет вид

PVA = A/(1+i)+A/(1+i)2 A/(1+i)3+…+A/(1+i)n.

Введем следующие обозначения

B=A/(1+i),

C=1/(1+i).

В результате получим

PVA=B*(1+C+C2+C3+… +Cn-1) *

Умножая левую и правую части уравнения на величину C

PVA*С = B*(C+C2+C3+… +Cn) **

Вычитая уравнение ** из * получим

PVA*(1-С) = B*(1-Cn).

Или

PVA*[1-1/(1+i)] = A/(1+i)*[1-1/(1+i)n)].

Умножение обеих частей уравнения на величину (1+i) дает

PVA*i = A*[1-1/(1+i)n)]

Или

PVA = A*[1/i-1/(i*(1+i)n)].

Аналогичным образом может быть получено выражение для расчета будущей стоимости аннуитета.

FVA = A+A*(1+i)2 A*(1+i)3+…+A*(1+i)n-1.

Введем обозначения B=A*(1+i)/ и получим

FVA = A*(1+B +B2 B3+…+Bn-1).

Умножим обе части уравнения на величину B.

FVA*B = A*(B +B2 B3+…+Bn).

Вычитая данное уравнение из предыдущего получим,

FVA*(1-B) = A*(1-Bn).

Или

FVA = A/i*[(1+i)n-1].

По аналогии с функциями FM1(i, n)= (1+i)n и FM2(i, n)=1/ (1+i)n функции FM3(i, n)= 1/i*[(1+i)n-1] FM4(i, n)= [1/i-1/(i*(1+i)n)] и табулированы для различных значений i и п. Экономический смысл FМЗ(i, п), называемого мультиплицирующим множителем для аннуитета, заключается в следующем: он показывает, чему будет равна суммарная величина срочного аннуитета в одну денежную единицу (например, один рубль) к концу срока его действия. Предполагается, что производится лишь начисление денежных сумм, а их изъятие может быть сделано по окончании срока действия аннуитета. Множитель FМ4(i, п) показывает текущую стоимость аннуитета в одну денежную единицу при заданных значениях i и n.

При выполнении некоторых инвестиционных расчетов используется техника оценки бессрочного аннуитета. Аннуитет называется бессрочным, если денежные поступления продолжаются достаточно длительное время (в западной практике к бессрочным относятся аннуитеты, рассчитанные на 50 и более лет).

В этом случае прямая задача смысла не имеет. Что касается обратной задачи, то ее решение может быть получено на основе формулы

PVA = A*[1/i-1/(i*(1+i)n)]

при n стремящейся к бесконечности.

PVA = A/i

Приведенная формула используется для оценки целесообразности приобретения бессрочного аннуитета. В этом случае известен размер годовых поступлений; в качестве коэффициента дисконтирования i обычно принимается гарантированная процентная ставка (например процент, предлагаемый государственным банком).







Дата добавления: 2014-12-06; просмотров: 1371. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия