Простой и сложный процент
Простой процент – это такой процент при котором его величина начисляется на первоначально вложенную сумму средств. При этом сумма процента, начисленного в предыдущие периоды, не принимается в расчет в процессе последующего наращения. В случае сложного процента процент начисляется на постоянно нарастающую базу с учетом процентов, начисленных в предыдущие периоды. Он применяются в тех случаях, когда процент по кредитам (депозитам) выплачивается не сразу, а присоединяется к сумме основного долга. Такая процедура носит название капитализации. Величины (1+n*i) и (1+i)n называются коэффициентами (множителями) наращения простых и сложных процентов соответственно. Пример. Предположим, что вы положили на банковский счет 1000 руб. (PV) Процентная ставка равна 10% годовых. Необходимо рассчитать сумму, которую вы получите через 5 лет при условии, что не будите изымать проценты. Рассчитаем будущую стоимость поэтапно. В конце первого года у вас на счете будет сумма равная FV1= 1000* (1+0.1) = 1100 руб. Полученная сумма складывается из 1000 рублей, с которых начиналась данная финансовая операция, плюс проценты в размере 100 руб. Будущая стоимость 1000 руб. к концу первого года составила 1100 руб. Если вы оставите 1100 руб. еще на один год, то по окончании второго года вы будите иметь сумму FV2= 1100* (1+0.1) = 1210 руб. Данную сумму можно представить в виде трех составляющих. Исходные деньги – 1000 рублей, проценты за первый год 100 руб. и за второй год – 100 руб. Проценты, начисленные на основную сумму вклада, называются простыми процентами. Третья составляющая равна 10 руб. и представляет проценты, полученные во второй год, которые были начислены на 100 рублей, полученные в виде процентов за первый год. Проценты, начисленные на уже начисленные ранее проценты, называются сложными процентами. Общая сумма процентных начислений 210 руб. состоит из простых процентов (200 руб.) и сложных процентов (10 руб.). Продолжая представленную цепочку вычислений, мы можем рассчитать сумму на счете через 5 лет. FV5= 1000* (1+0.1)5 = 1610.51 руб. Таким образом, будущая стоимость 1000 руб. через пять лет при ставке ссудного процента 10% годовых составляет 1610.51 руб. Общая сумма процентных начислений за пять лет составляет 610.51 руб., из которых 500 руб. являются простыми процентами и 110.51 – сложными. Пример. Вам 20 лет и вы решили положить на счет 1000 руб. сроком на 40 лет при ставке 10% годовых. Сколько денег будет на вашем счете, когда вам будет 60 лет, и вы выйдите на пенсию. Сколько из этой суммы составят простые и сложные проценты. FV = 1000 * (1+0.1)40 = 45259.26 Полученная сумма складывается из первоначальной суммы равной 1000 руб., простых процентов 1000*0.1*40 = 4000 руб. и сложных процентов, равных 40259.26 руб. Рассмотрим эффект увеличения процентной ставки до 11%. FV = 1000 * (1+0.11)40 = 65000.87 руб. В данном примере кажущееся незначительным увеличение процентной ставки на 1% привело к получению дополнительной суммы равной 24741.61 руб. Наряду с задачами наращения по сложному проценту в практике финансовых вычислений имеют место задачи, требующие наращения по простым процентам. В этом случае проценты начисляются только на основную сумму вклада. К ним относятся задачи определения цены краткосрочных финансовых инструментов, а также долгосрочных инструментов, если проценты не присоединяются к основному долгу, а выплачиваются. Формула для определения будущей стоимости денег для данного случая будет иметь вид: FV = PV * (1+n*i). В этой формуле мы использовали ранее принятые обозначения. Пример. Возвратимся к рассмотренному выше примеру. Вам 20 лет и вы решили положить на счет 1000 руб. сроком на 40 лет при ставке 10% годовых. Сколько денег будет на вашем счете, когда вам будет 60 лет, и вы выйдите на пенсию. FV = 1000 * (1+40*0.1) = 1000+4000 = 5000 Полученная сумма складывается из первоначальной суммы равной 1000 руб. и простых процентов 1000*0.1*40 = 4000 руб. Процент может определяться не только при расчетах от настоящего к будущему, но и от будущего к настоящему. В этом случае процент представляет собой скидку с некоторой конечной суммы. Например, в банковской практике учета векселей стоимость векселя является конечной суммой, с которой производится скидка по определенной ставке, называемой учетной. Разница между стоимостью векселя и суммой, которую банк выдает по этому векселю, называется дисконтом.
|