Применение отношений для обработки данных
Отношение может быть не только бинарным, в общем случае отношением называется подмножество , т.е. элементом отношения является упорядоченный набор , где . При обработке данных наборы из n элементов называют записями, i -му элементу набора соответствует i -ое поле записи. Записи группируются в файлы, и если файлы содержат совокупность записей, удовлетворяющих некоторым отношениям, мы получаем базу данных. Таким образом, отношение удобно представлять в виде таблицы, каждая строка которой соответствует записи, а каждый столбец – определенному полю записи. Любая ли таблица может задавать отношение? Очевидными являются следующие требования: 1) порядок столбцов таблицы фиксирован; 2) каждый столбец имеет название; 3) порядок строк таблицы произволен; 4) в таблице нет одинаковых строк. Число n столбцов таблицы называется степенью отношения (говорят, что задано n -арное отношение). Число строк в таблице – количество элементов отношения. Математическая модель, описывающая работу с такими таблицами, называется реляционной алгеброй.
1.3.2. Теоретико-множественные операции реляционной алгебры Так как отношения являются множествами, к ним применимы обычные операции теории множеств: пересечение, объединение, разность. Но в отличие от алгебры множеств в реляционной алгебре эти операции могут быть применены не к любым, а только к совместимым отношениям. Два отношения будем называть совместимыми, если их степени равны, а соответствующие поля относятся к однотипным множествам. Первое требование означает, что объединение, пересечение и разность определяются только для таблиц с одинаковым количеством столбцов, а второе – в соответствующих столбцах должны располагаться однотипные данные (не выполняется операция пересечения множества фамилий и множества зарплат). Пересечением двух отношений R и S называется множество всех записей, каждая из которых принадлежит как R, так и S (рис. 1.14, а, б). Объединением двух отношений R и S называется множество записей, которые принадлежат хотя бы одному из отношений R или S (рис.1.14, а, в). Разностью двух отношений R и S называется множество всех записей, каждая из которых принадлежит отношению R, но не принадлежит отношению S (рис.1.14, а, г).
В реляционной алгебре вводится операция расширенного декартова произведения. Пусть – элемент n- арного отношения R, а – элемент m -арного отношения S. Конкатенацией записей r и s назовем запись , полученную приписыванием записи s к концу записи r.
Расширенным декартовым произведением отношений R и S называется множество , элементами которого являются все возможные конкатенации записей и . Отметим, что полученное отношение имеет степень и важен порядок выполнения операции: . В качестве упражнения запишите расширенное декартово произведение для отношений R и S (рис. 1.15) и сравните с отношением .
|