Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие указания





Уравнения Лагранжа второго рода (далее – уравнения Лагранжа) представляют собой дифференциальные уравнения движения системы в обобщенных координатах [1].

Обобщенные координаты – независимые между собою переменные параметры системы, однозначно определяющие положение системы в любой момент времени. Число обобщенных координат системы с голономными связями*) (ниже рассматриваются только такие системы) равно числу ее степеней свободы.

Уравнения Лагранжа имеют вид

 

, i = 1, 2, …, n, (1.1)

 

где n – число степеней свободы голономной системы, qi – обобщенные координаты, – обобщенные скорости (производные обобщенных координат по времени t), Qi – обобщенные силы, T – кинетическая энергия системы, и – частные производные кинетической энергии системы по обобщенной координате qi и по обобщенной скорости , – производная по времени t.

Кинетическую энергию системы со стационарными связями**) (ниже рассматриваются системы именно с такими связями) целесообразно до подстановки в уравнения (1.1) представить в виде функций обобщенных координат и обобщенных скоростей

 

. (1.2)

 

Чтобы из уравнений Лагранжа (1.1) получить дифференциальные уравнения движения системы, нужно уметь:

· устанавливать число степеней свободы системы (подразд. 1.2),

· выбирать ее обобщенные координаты (подразд. 1.3),

· определять обобщенные силы (подразд. 1.4),

· составлять выражение кинетической энергии системы в обобщенных координатах (подразд. 1.5).

Выполнение этих операций будем рассматривать на следующих трех примерах.

 







Дата добавления: 2014-12-06; просмотров: 579. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия