Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Замещаем приращение функции ее полным дифференциалом





Замещаем приращение функции ее полным дифференциалом.

Полагая, что есть частное значение функции в точке М 1 (1, 08; 3, 96) и что вспомогательная точка будет М 0 (1; 4), получим:

, так как ln1 = 0;

;

 

5.3. Дифференцирование сложных функции

 

Определение:

Функция Z называется сложной функцией от независимых переменных x, y, …, t, если задана она через промежуточные аргументы .

; ;

; .

Частная производная сложной функции по одной из независимых переменных равна сумме произведений ее частных производных по промежуточным аргументам на частные производные этих аргументов по независимой переменной:

Если все аргументы зависят от одной независимой переменной x, то z – сложная функция от x. Тогда производная сложной функции называется полной и вычисляется по формуле

 

Задача 5.10. , , v = cos x.

Далее.

 

Задача 5.11. , , .

Здесь z от u и v, а сами u и v зависят от x и y. Тогда

 

 

5.4. Частные производные высших порядков

Частные производные , первого порядка обычно зависят от тех же аргументов и каждую из них можно дифференцировать по каждому аргументу.

Обозначения:

– смешанная частная производная.

Аналогично определяются производные III, IV… порядков.

 

Задача 5.12. Найти частные производные второго порядка







Дата добавления: 2014-10-22; просмотров: 657. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия