Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гидравлический расчет трубопроводов





Все трубопроводы подразделяются на две категории: простые и сложные. Простой трубопровод не имеет разветвлений на пути движения жидкости, но может представлять последовательное соединение труб разного диаметра. Сложный трубопровод имеет хотя бы одно разветвление и может содержать как параллельные и последовательные соединения труб.

Если в трубопроводе необходимо обеспечить расход жидкости Q, то потребный для этого напор Н потр. – пьезометрическая высота в начальном сечении определяется по формуле

, (6.1)

где – статический напор, - суммарные потери напора на сопротивление в трубопроводе.

Суммарная потеря напора складывается из потерь на трение по всей длине трубы и местных потерь

= +

Для определения потерь напора на трение в трубах круглого сечения можно использовать формулу Дарси, которую для дальнейших расчетов удобно выразить через расход:

(6.2)

где l – длина рассматриваемого участка трубопровода; d – диаметр трубопровода; λ – безразмерный коэффициент гидравлического трения (коэффициент Дарси).

При турбулентном движении коэффициент трениязависит от числа Рейнольдса и относительной шероховатости трубы ε Значения эквивалентной (абсолютной) шероховатости Δ для различных труб представлены в Приложении 7.

Универсальной формулой, учитывающей одновременно оба фактора является формула Альтшуля:

(6.3)

Для гидравлически гладких труб шероховатость на сопротивление не влияет, и коэффициент сопротивления однозначно определяется числом Рейнольдса:

(6.4)

Местные потери напора определяются по формуле Вейсбаха:

(6.5)

где υ – средняя скорость потока в сечении перед местным сопротивлением ζ – коэффициент местного сопротивления (определяется формой местного сопротивления и его геометрическими параметрами).

C учетом формул Дарси и Вейсбаха,

= + (6.6)

При внезапном расширении трубы потеря напора происходит при вводе жидкости в силовые цилиндры, пневмогидравлические аккумуляторы, фильтры и прочие устройства. Величина этой потери равна скоростному напору потерянной скорости (теорема Борда):

Обозначим - коэффициент местных сопротивлений при расширении трубы, где d1 и d 2 – внутренние диаметры сечений трубы перед и за расширением.

В случае внезапного сужения трубопровода коэффициент местных сопротивлений равен

,

где S1 и S 2 – площади сечений трубы до и после сужения.

Формула (6.6) справедлива для обоих режимов, однако для ламинарного режима удобнее использовать формулу Пуазейля:

, (6.7)

в которой необходимо заменить фактическую длину трубопровода расчетной, равной

,

где – длина, эквивалентная всем местным гидравлическим сопротивлениям в трубопроводе.

Формула для расчета потребного напора имеет вид

, (6.8)

где для ламинарного режима течения

, m =1; (6.9)

турбулентного режима течения

, m =2 (6.10)

Характеристики потребного напора и суммарных потерь напора трубопроводов = при ламинарном режиме представляет прямые, при турбулентном - параболы.

 







Дата добавления: 2014-12-06; просмотров: 2358. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия