Определение неизвестной функции распределения
Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Разобьем диапазон наблюдаемых значений на интервалы ] X0, X1 [, ] X1, X2 [,..., ] Xk-1, Xk [ одинаковой длины . Пусть mi - число наблюдаемых значений , попавших в i -й интервал. Разделив mi на общее число наблюдений n, получим частоту , соответствующую i -му интервалу: , причем . Составим следующую таблицу:
которая называется статистическим рядом. Эмпирической (или статистической) функцией распределения случайной величины называется частота события, заключающегося в том, что величина в результате опыта примет значение, меньшее x: На практике достаточно найти значения статистической функции распределения F*(x) в точках X0, X1,..., Xk, которые являются границами интервалов статистического ряда:
Cледует заметить, что F*(x)=0 при x< X0 и F*(x)=1 при x> Xk. Построив точки Mi [Xi; F*(Xi)] и соединив их плавной кривой, получим приближенный график эмпирической функции распределения (рис. 15). Используя закон больших чисел Бернулли, можно доказать, что при достаточно большом числе n испытаний с вероятностью, близкой к единице, эмпирическая функция распределения F*(x) отличается сколь угодно мало от неизвестной нам функции распределения F(x) cлучайной величины
Часто вместо построения графика эмпирической функции распределения поступают следующим образом. На оси абсцисс откладывают интервалы ] X0, X1 [, ] X1, X2 [,..., ] Xk-1, Xk [. На каждом интервале строят прямоугольник, площадь которого равна частоте , соответствующей данному интервалу. Высота hi этого прямоугольника равна , где - длинна каждого из интервалов. Ясно, что сумма площадей всех построенных прямоугольников равна единице.
Пример. Измерен диаметр у 270 валов хвостовика. Значения диаметра (в см) оказались в диапазоне 66-90 см. Разбив этот диапазон на интервалы диной 2 см ( =2), получим статистический ряд (см. таблицу)
Построим гистограмму и эмпирическую функцию распределения. Подсчитанные частоты приведены в столбце (4), а значения высот hi прямоугольников гистограммы - в столбце (5). Гистограмма изображена на рис. 17.
Значения эмпирической функции распределения в граничных точках интервалов вычислены по формуле (65) и приведены в следующей таблице:
Так, например, График функции F*(x) изображен на рис.18.
|