Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. 1. Используя операционное исчисление, найти частное решение дифференциального уравнения , удовлетворяющее начальному условию





1. Используя операционное исчисление, найти частное решение дифференциального уравнения , удовлетворяющее начальному условию .

Решение. Пусть , тогда , кроме того . Таким образом, применяя преобразование Лапласа к обеим частям уравнения, приходим к операторному уравнению

.

Выразим из полученного уравнения функцию :

.

Представим эту рациональную дробь как сумму простейших дробей:

Итак, . Следовательно, решением заданного дифференциального уравнения будет функция, которая является оригиналом для полученного изображения:

.

2. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям .

Решение. Пусть . Тогда

и .

Подставляя эти выражения в дифференциальное уравнение, получаем операторное уравнение:

,

или

Методом неопределенных коэффициентов найдем разложение этой дроби в сумму простейших дробей.

Таким образом, . Следовательно, частное решение данного дифференциального уравнения будет

.

3. Решить задачу Коши , где функция задана графически на рисунке.

Решение. Пусть . Тогда . Найдем изображение функции , воспользовавшись теоремой запаздывания. Зададим аналитически, используя единичную функцию Хевисайда:

.

Тогда

.

Операторное уравнение принимает вид

.

Находим из него неизвестное изображение :

.

Разложим дробь в сумму простейших дробей.

.

(При разложении можно использовать метод неопределенных коэффициентов.) Следовательно,

.

Еще раз используя теорему запаздывания, найдем искомое решение дифференциального уравнения:

или

4. Операционным методом решить систему линейных дифференциальных уравнений

Решение. Пусть , . Тогда , и . Система операторных уравнений принимает вид

или

Получили систему линейных алгебраических уравнений относительно изображений и . Для ее решения используем метод Крамера.

,

,

.

Итак,

Тогда .

Следовательно, .

Таким образом, решением системы дифференциальных уравнений, удовлетворяющим заданным начальным условиям являются функции , .

5. Операционным методом решить систему линейных дифференциальных уравнений

Решение. Перейдем к изображениям искомых функций:

, ,

, .

Кроме того,

.

Тогда система операторных уравнений будет иметь вид

или

Решим полученную систему методом Крамера.

,

Выпишем изображения искомых функций:

,

.

Используя метод неопределенных коэффициентов, восстановим оригиналы.

Таким образом, решением системы уравнений являются функции , .

 

 

Задачи для практических занятий и самостоятельной работы по теме Операционное исчисление»

 

1. Найдите изображения следующих функций:

1) . Ответ: .

2) . Ответ: .

3) .

Ответ: .

4) . Ответ: .

5) . Ответ: .

6) . Ответ: .

7) . Ответ: .

8) . Ответ: .

9) .

Ответ: .

10) .

Ответ: .

11) .

Ответ: .

12) . Ответ: .

13) . Ответ: .

14) . Ответ: .

15) . Ответ: .

16) . Ответ: .

 

2. Найдите оригиналы по заданным изображениям:

1) . Ответ: .

2) . Ответ: .

3) .

Ответ: .

4) . Ответ: .

5) . Ответ: .

6) .

Ответ: .

7) . Ответ: .

8) . Ответ: .

9) . Ответ: .

10) . Ответ: .

11) . Ответ: .

12) .

Ответ: .

13) .

Ответ: .

14) . Ответ: .

15) .

Ответ: .

16) . Ответ: .

 

3. Найдите свертку функций и ее изображение:

1) .

Ответ: .

2) .

Ответ: .

3) .

Ответ: ;

.

4) .

Ответ: .

5) .

Ответ: ;

.

 

4. Найдите оригиналы для следующих изображений, используя теорему свертывания:

1) . Ответ: .

2) . Ответ: .

3) . Ответ: .

4) . Ответ: .

 

5. Используя теорему запаздывания, найдите изображения следующих функций:

1)

 

Ответ: .

 

2)

 

 

Ответ: .

3)

 

Ответ: .

 

4)

 

Ответ: .

 

 

5) Ответ: .

6)

Ответ: .

 

6. Используя теорему запаздывания, найдите оригиналы для следующих изображений:

1) . Ответ:

2) . Ответ:

3) .

Ответ:

4) .

Ответ:

 

7. Решите дифференциальные уравнения операционным методом:

1) . Ответ: .

2) . Ответ: .

3) . Ответ: .

4) . Ответ: .

5) .

Ответ: .

6) .

Ответ: .

7) .

Ответ: .

8) .

Ответ: .

9) .

Ответ: .

10) .

Ответ: .

11) .

Ответ: .

12) .

Ответ: .

13) .

Ответ: .

14) .

Ответ: .

15) .

Ответ: .

 

16) .

Ответ: .

17) , где

Ответ:

18) , где

Ответ:

 

8. Решите системы дифференциальных уравнений операционным методом:

1) . Ответ: .

2) Ответ: .

3)

Ответ: .

4)

Ответ: .

5) .

Ответ: .

6) .

Ответ: .

7)

Ответ: .

8)

Ответ: .

9)

Ответ: .

10)

Ответ: .

11)

Ответ: .







Дата добавления: 2014-12-06; просмотров: 2452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия