Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перетворення неоднорідних граничних умов в однорідні при використанні методу розділення перемінних





Вище було показано, що метод розділення перемінних є досить могутнім, а одержувані з його допомогою розв’язки представляються в зручній формі. Проте цей метод застосовний не до всіх задач. Для застосовності методу розділення перемінних граничні умови повинні бути лінійними й однорідними, тобто

Покажемо, яким чином задача з неоднорідними граничними умовами вигляду:

рівняння теплопровідності

граничні умови

(неоднорідні граничні умови) (25)

початкова умова

(26)

може бути вирішена шляхом зведення її до задачі з однорідними граничними умовами. Розглянемо найпростішу задачу про поширення тепла в тепло­ізольованому стержні, кінці якого підтримуються при постійних температурах Т1, Т2, тобто

(27)

, (28)

, (29)

(30)

Труднощі цієї задачі в тому, що, оскільки граничні умови в ній неоднорідні, ми не можемо вирішувати її методом розділення перемінних. Однак, мабуть, що при t ® ¥ розв’язок нашої задачі прагне до стаціонарного розв’язку, що лінійно змінюється (уздовж х) від температури Т1 до температури Т2 (Рис.3).


 

 

 


Іншими словами, розумно припустити, що температуру в нашій задачі можна представити у вигляді суми двох додатків:

T(x, t) = стаціонарна температура (граничний розв’язок для великих часів) + перехідна температура (частина розв’язку, що залежить від початкових умов і прагне до нуля з ростом часу) =

У даному випадку наша задача знайти перехідну температуру U(x, t)

Підставляючи

(31)

у вихідну задачу (22)- (30), ми приходимо до нової задачі щодо невідомої функції U(x, t). Вирішивши цю задачу щодо нової невідомий функції U(x, t), можна додати її до стаціонарного розв’язку, у результаті чого вийде шукана функція T(x, t). Проробляючи ці прості перетворення з (27) – (30), одержимо

(32)

, (33)

, (34)

, (35)

де нова, але відома початкова умова.

Ця задача не тільки з однорідним рівнянням, але і з однорідними граничними умовами, що дозволяє вирішити її методом розділення перемінних, використовуючи розглянутий вище метод розділення перемінних, для функції U(x, t) одержуємо наступний вираз

, (36)

де

(37)

Остаточно, розв’язок вихідної задачі виходить у такому вигляді

(38)

Що стосується граничних умов із залежними від часу правими частинами, то основні ідеї тут такі ж, як і в попередній задачі, але трохи більш складні.

Перетворення залежних від часу граничних умов у нульові.







Дата добавления: 2014-12-06; просмотров: 735. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия