Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Зробимо заміну змінних





(5)

Одержуємо

, (6)

, = 0, (7)

, (8)

при х ® +¥, (9)

де (10)

Тепер для знаходження функції на I -му етапі розв’язку задачі використовуємо пряме синус-перетворення Фур'є по координаті х:

(11)

Знайдемо перетворивши (6) – (9) відповідно до (11):

, (12)

(13)

Інтегруючи праву частину (13) двічі по частинах і з огляду на (8) і (69), одержуємо

(14)

Таким чином, система рівнянь (6) – (9) переходить у наступне звичайне лінійне диференціальне рівняння 1-го порядку для функції FS(s, t):

, (15)

(16)

Вирішуємо (15) – (16) методом Бернуллі:

FS = m(t)× n(t) (17)

Одержуємо для перебування функції n(t) диференціальне рівняння з поділяючими змінними

, (18)

розв’язок якого має вигляд:

(19)

Аналогічно, для функції m(t):

, (20)

, (21)

де с – стала величина.

Підставляючи (19) і (21) у (17) і враховуючи початкову умову (16), маємо

(22)

На другому етапі розвязування задачі для знаходження оригіналу Т(x, t) використовуємо зворотне синус-перетворення Фур'є для функції F(s, t):

(23)

Підставляючи (22) у (23), одержуємо

(24)

 
 
I

 


Внутрішній інтеграл I знаходимо методом інтегрування по частинах:

(25)

З використанням довідкової літератури одержуємо

(26)

Підставляючи (25) і (26) у (24) і з огляду на (5) і (10), знаходимо загальний розв’язок вихідної задачі

(27)

Якщо прийняти у формулі (27) Тn(t) = T (температура плавлення матеріалу), то одержуємо

(28)

Отримана формула (28) дозволяє проводити розрахунки розподілів температури по глибині оброблюваного матеріалу (металу, скла та ін.) рухливим сканіруючим джерелом тепла (електронним променем, лазерним випромінюванням та ін.), що створює на поверхні оброблюваного виробу тонкий розплавлений шар товщиною порядку декількох мікронів.

Задача2. При обробці виробу через його поверхню всередину матеріалу надходить тепловий потік Fn(t). Процес теплопередачі в цьому випадку описується наступним рівнянням теплопровідності з граничною умовою II-го роду на поверхні (Рис.4).

 

Рисунок 4 – Схема теплового впливу на оброблюваний виріб при заданому

тепловому потоці на його поверхні Fп(t) (інші позначення аналогічні рис.3)

 

, (29)

, (30)

, (31)

при х ® +¥ (32)

Необхідно, використовуючи метод інтегральних перетворень Фур'є, знайти загальний розв’язок задачі T(x, t).

 

Розв’язок

Використовуючи заміну змінних (5), одержуємо

, (33)

, (34)

, (35)

при х ® +¥ (36)

Для знаходження функції на I -му етапі розв’язку задачі використовуємо пряме косинус-перетворення Фур'є по координаті х:

(37)

З використанням (37) перетворимо систему рівнянь (33) – (36):

(38)

Інтегруючи (38) двічі по частинах, одержуємо

(39)

У результаті для перебування функції Fс(s, t) одержуємо наступне диференціальне рівняння

, (40)

(41)

Для розв’язку задачі (40) – (41) використовуємо, також як і в попередній задачі, метод Бернуллі і одержуємо

(42)

На II-му етапі розв’язку задачі оригінал знайдемо, використовуючи зворотне косинус-перетворення Фур'є для функції Fc(s, t):

(43)

Підставляючи (42) у (43), маємо

(44)

З використанням (5) і (26) одержуємо наступний загальний розв’язок задачі

(45)

За формулою (45) можна розраховувати значення температури в різних точках виробів, оброблюваних сканіруючими джерелами тепла різної природи, при заданих значеннях теплових потоків Fn(t).

Задача 3 В процесі поверхневої обробки матеріалу в зоні впливу джерела тепла відбувається теплообмін з навколишнім середовищем за законом Ньютона. При цьому процес теплопровідності описується наступним рівнянням теплопровідності з граничною умовою III роду на поверхні (Рис.5)

 

 

Рисунок 5 – Схема конвективного теплообміну поблизу поверхні оброблюваного виробу

 

® - напрямок руху охолоджуваної рідини (газу) вздовж нагрітої поверхні з швидкістю W що має температуру Tc(t) < Ts (Ts – температура оброблювальної поверхні).(Інші позначення аналогічні рис.3).

 

, (46)

, (47)

, (48)

при х ® +¥ (49)

Потрібно, використовуючи метод інтегральних перетворень Фур'є, одержати загальний розв’язок задачі T(x, t).

Розв’язок

Перетворимо систему рівнянь (46) – (49), зробивши наступні заміни

(50)

Одержуємо

, (51)

, (52)

(53)

при х ® +¥ (54)

Для знаходження функції на I-му етапі розв’язку задачі використовуємо наступне пряме синус-косинус перетворення Фур'є по координаті:

(55)

Далі за допомогою (55) перетворимо систему рівнянь (51)-(54):

(56)

Інтегруючи праву частину (56) двічі по частинах і з огляду на (53) і (54), одержуємо

(57)

Таким чином, для перебування функції Fsc (s, t) маємо наступне диференціальне рівняння

(58, 59)

Розв’язуючи (58) – (59) одержуємо, також як і в попередніх задачах, методом Бернуллі:

(60)

На II-му етапі розв’язку задачі оригінал знайдемо, використовуючи зворотне синус-косинус перетворення Фур'є для функції Fsc(s, t):

(61)

Підставляючи (60) у (61), одержуємо:

 

 

I1
(62)

 
 
I2

 

 


Внутрішні інтеграли I1 і I2 знаходимо з довідникової літератури:

(64)
(63)

Підставляючи (63) і (64) у (62), одержуємо:

(65)

Внутрішні інтеграли в (65) обчислимо, використовуючи, відповідно до довідкової літератури, наступний вираз

(66)

З урахуванням (66) одержуємо:

,
(67)

(68)

Підставляючи (67) і (68) в (66) і з огляду на (50), одержуємо загальний розв’язок задачі

(69)

Формула (69) дозволяє розраховувати розподіл температури по глибині оброблюваних виробів, поблизу поверхні яких відбувається конвективний теплообмін з охолоджуючою рідиною.

 

 








Дата добавления: 2014-12-06; просмотров: 555. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия