Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Правило 2





 
 

Изобразим определитель дважды в виде 9 точек, каждая из которых означает соответствующий элемент. На левом рисунке проведем главную диагональ и два треугольника таким образом, чтобы одна сторона каждого треугольника была параллельна главной диагонали. Произведения элементов главной диагонали и произведения элементов, лежащих в вершинах обоих треугольников, берутся со знаком плюс. На правом рисунке проведем побочную диагональ и два треугольника со стороной, параллельной побочной диагонали. Соответствующие произведения входят в определитель со знаком минус.

Выписываем сумму произведений матрицы, учитывая знаки.

Замечание. Правило Сарруса может быть использовано только для вычисления определителя третьего порядка.

· Вычисление определителя матрицы любого порядка разложение по строке или столбцу

Запишем полученную формулу (1.1) определителя 3-го порядка и вынесем за скобку элементы первой строки:

.

Обозначим члены в скобках соответственно А 11, А 12 и А 13 и назовем их алгебраическими дополнениями элементов - соответственно а 11, а 12 и а 13. Тогда

= а 11 А 11+ а 12 А 12+ а 13 А 13.

Аналогичные равенства можно получить для элементов второй и третьей строки, а также для элементов любого столбца. Для i -й строки или для j -го столбца определителя n -го порядка такие равенства соответственно имеют вид:

= аi 1 Ai 1+ ai 2 Ai 2+ … + ainAin, где i = 1, … n;

= а 1 j A 1 j + a 2 j A 2 j + … + anjAnj, где j = 1, … n.

Данная запись определителя называется разложением определителя по строке или столбцу.

 

Введем еще одно понятие.

Минором Мij элемента aij определителя n -го порядка называется определитель (n – 1)-го порядка, полученный из вычеркиванием i -й строки и j -го столбца, на пересечении которых стоит элемент aij.

Например, для определителя третьего порядка

; .

Для определителя n -го порядка можно строго доказать, что

Aij = (–1) i + j Mij.

Этот способ вычисления определителя является универсальным, т.к. позволяет вычислять определители любого порядка.

► Пример 1.18. Вычислить определитель матрицы из предыдущего примера путем разложения его, например, по второй строке.

Решение.

= –2 (3 2 – (–1) (–2)) + 4 (1 2 – (–1) 3) –1 (1 (–2) –3 3) =

= –8 + 20 +11 = 23. ►

 

· Определитель треугольной матрицы

Легко видеть, что если последовательно раскладывать определитель треугольной матрицы по элементам столбца, определитель представляет собой произведение элементов главной диагонали:

.

 

Свойства определителей:

1. Если какая-либо строка или какой-либо столбец определителя состоит только из нулей, то определитель равен нулю.

Это сразу видно, если разложить определитель по нулевой строке или столбцу. Например:

.

2. При транспонировании матрицы ее определитель не изменяется:

det A = det .

3. Определитель произведения двух квадратных матриц равен произведению их определителей, то есть, если

С = АВ, то det C = det A det B.

Отсюда следует, что, если даже , то det(AB) = det(BA).

4. При перестановке любых двух строк или столбцов определитель не изменяется по абсолютной величине, но меняет знак на противоположный.

 

Например, перестановка первой и второй строки дает:

.

5. Определитель, содержащий 2 одинаковых строки или два одинаковых столбца, равен нулю. Действительно, если переставить эти две строки (столбца), то, с одной стороны, определитель должен поменять знак по свойству 4; с другой стороны - остаться неизменным, т. к. поменяли одинаковые строки (столбцы). Это возможно только когда определитель равен нулю.

 

Например:

.

Это свойство можно всегда проверить путем непосредственного вычисления определителя.

6. Общий множитель всех элементов какой-либо строки или столбца можно вынести за знак определителя.

Например,

.

7. Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения к элементам другой строки (столбца) равна нулю.

Например, для определителя третьего порядка

=

= .

8. Определитель не изменится, если к элементам одной строки (или столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Например:

.







Дата добавления: 2014-12-06; просмотров: 560. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия