Свойства термодинамической системы
Системе присущи такие свойства, как объем V, давление р, температура Т, концентрация сi, теплоемкость Ср или CV, внутренняя энергия U, а совокупность свойств определяет состояние системы. Если изменилось состояние системы, изменяются её свойства. Изменение состояния системы называется процессом. Подчеркнем, что изменение свойств не зависит от пути перехода системы из начального состояния в конечное. Между свойствами системы существуют определенные функциональные связи.Например, уравнение состояния идеального газа связывает свойства таким образом, что любое из них можно определить, если известны другие. Важнейшими понятиями в термодинамике являются внутренняя энергия, теплота, теплоемкость, работа. Обмен внутренней энергией U термодинамической системы (в дальнейшем термодинамическую систему будем называть просто системой) с окружающей средой осуществляется либо в форме работы А, либо в форме теплоты Q, либо одновременно в обеих формах. Подчеркнем, что термодинамика рассматривает только две формы передачи энергии – теплоту и работу и не рассматривает, например, обмен системы энергией с окружающей средой посредством электромагнитного излучения.
Внутренняя энергия Полная энергия системы включает: 1) энергию направленного перемещения системы в пространстве как целого; 2) энергию системы в гравитационном и электромагнитном полях; 3) внутреннюю энергию системы U. В химии рассматривают неподвижные системы в постоянном внешнем поле. В таких условиях изменение энергетического состояния системы определяется изменением её внутренней энергии U. Внутренняя энергия U есть сумма кинетической S Е кин. и потенциальной S Е пот. энергии всех микрочастиц системы. U = S Е кин. + S Е пот. Кинетическая энергия как составляющая часть внутренней энергии – это энергия различного вида движения микрочастиц системы. Потенциальная энергия как составляющая внутренней энергии – этоэнергия межмолекулярного и внутримолекулярного взаимодействия. Например, нагревание жидкой воды до температуры кипения увеличивает кинетическую энергию системы (скорость движения молекул). Когда жидкость кипит при постоянной температуре и давлении (р, Т = const), кинетическая энергия не увеличивается, несмотря на то, что нагреватель продолжает передавать энергию в форме теплоты системе (жидкость – пар). Энергия нагревателя расходуется на увеличение потенциальной энергии S Е пот. пара, равной теплоте испарения Q исп.. Для отрыва молекул с поверхности жидкости требуется затратить энергию нагревателя, чтобы преодолеть силы межмолекулярного сцепления в жидкой воде. Температура не будет изменяться, пока не испарится последняя капля жидкости. Химическая реакция, например реакция горения водорода в кислороде в калориметрической бомбе, позволяет превратить потенциальную энергию (энергию притяжения и отталкивания химически связанных атомов в молекулах) в кинетическую энергию (энергию движения молекул продуктов реакции). Важным свойством идеального газа является независимость его внутренней энергии от объема и давления и . Этот факт экспериментально был доказан Джоулем. Из опытов Джоуля следует, что внутренняя энергия идеального газа является функцией только температуры: . (4.7) Если система в начальном состоянии обладала внутренней энергией U 1 при температуре Т 1 и перешла в конечное состояние U 2 при температуре Т 2, то изменение внутренней энергии будет определяться разностью: D U = U 2 - U 1 (4.8)
|