Студопедия — Свойства термодинамической системы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства термодинамической системы






Системе присущи такие свойства, как объем V, давление р, температура Т, концентрация сi, теплоемкость Ср или CV, внутренняя энергия U, а совокупность свойств определяет состояние системы. Если изменилось состояние системы, изменяются её свойства. Изменение состояния системы называется процессом. Подчеркнем, что изменение свойств не зависит от пути перехода системы из начального состояния в конечное.

Между свойствами системы существуют определенные функциональные связи.Например, уравнение состояния идеального газа связывает свойства таким образом, что любое из них можно определить, если известны другие.

Важнейшими понятиями в термодинамике являются внутренняя энергия, теплота, теплоемкость, работа. Обмен внутренней энергией U термодинамической системы (в дальнейшем термодинамическую систему будем называть просто системой) с окружающей средой осуществляется либо в форме работы А, либо в форме теплоты Q, либо одновременно в обеих формах. Подчеркнем, что термодинамика рассматривает только две формы передачи энергии – теплоту и работу и не рассматривает, например, обмен системы энергией с окружающей средой посредством электромагнитного излучения.

 

Внутренняя энергия

Полная энергия системы включает:

1) энергию направленного перемещения системы в пространстве как целого;

2) энергию системы в гравитационном и электромагнитном полях;

3) внутреннюю энергию системы U.

В химии рассматривают неподвижные системы в постоянном внешнем поле. В таких условиях изменение энергетического состояния системы определяется изменением её внутренней энергии U.

Внутренняя энергия U есть сумма кинетической

S Е кин. и потенциальной S Е пот. энергии всех микрочастиц системы.

U = S Е кин. + S Е пот.

Кинетическая энергия как составляющая часть внутренней энергии – это энергия различного вида движения микрочастиц системы. Потенциальная энергия как составляющая внутренней энергии – этоэнергия межмолекулярного и внутримолекулярного взаимодействия.

Например, нагревание жидкой воды до температуры кипения увеличивает кинетическую энергию системы (скорость движения молекул). Когда жидкость кипит при постоянной температуре и давлении (р, Т = const), кинетическая энергия не увеличивается, несмотря на то, что нагреватель продолжает передавать энергию в форме теплоты системе (жидкость – пар). Энергия нагревателя расходуется на увеличение потенциальной энергии S Е пот. пара, равной теплоте испарения Q исп.. Для отрыва молекул с поверхности жидкости требуется затратить энергию нагревателя, чтобы преодолеть силы межмолекулярного сцепления в жидкой воде. Температура не будет изменяться, пока не испарится последняя капля жидкости.

Химическая реакция, например реакция горения водорода в кислороде в калориметрической бомбе, позволяет превратить потенциальную энергию (энергию притяжения и отталкивания химически связанных атомов в молекулах) в кинетическую энергию (энергию движения молекул продуктов реакции).

Важным свойством идеального газа является независимость его внутренней энергии от объема и давления

и .

Этот факт экспериментально был доказан Джоулем. Из опытов Джоуля следует, что внутренняя энергия идеального газа является функцией только температуры:

. (4.7)

Если система в начальном состоянии обладала внутренней энергией U 1 при температуре Т 1 и перешла в конечное состояние U 2 при температуре Т 2, то изменение внутренней энергии будет определяться разностью:

D U = U 2 - U 1 (4.8)

 







Дата добавления: 2014-10-22; просмотров: 608. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия