Ионные кристаллы. Ионный тип химической связи
Распространенным типом кристаллов являются кристаллы, образованные атомами (как минимум двумя различными атомами) с сильно различающимися значениями электроотрицательностей (cВ> > cА). В первом приближении можно считать, что в этом случае пара валентных электронов полностью смещается к атому В, при этом образуются ионы противоположного знака: А+ – катион и В- – анион. Данное допущение считается справедливым, если перенос заряда составляет величину более 2/3 от максимально возможной, что соответствует разности в значениях электроотрицательностей по Полингу более чем 2, 1 (). Минимум энергии системы соответствует чередованию во всех направлениях в кристаллической решетке катионов и анионов. В данном случае химическую связь относят к ионному типу и ее описание сводится к определению энергии взаимодействия ионов, то есть электрических зарядов. В первом приближении ионы можно представить недеформирующимися шарами. Поскольку электрическое поле сферически симметрично, энергия взаимодействия определяется только расстоянием между зарядами, а не их взаимным расположением. Минимум энергии достигается в случае наименьшего расстояния между зарядами, что выполняется при одном из вариантов плотнейшей упаковки ионов. Энергия электростатического взаимодействия одного моля ионов в кристалле (энергия ионной связи) называется энергией кристаллической решетки. Расчет энергии ионной кристаллической решетки. Между катионом (A+) и анионом (B-) действуют силы электростатического притяжения и отталкивания. Энергия притяжения может быть описана законом взаимодействия точечных зарядов. Энергия отталкивания ближайших соседних ионов определяется взаимодействием системы точечных зарядов электронов и ядер и описывается более сложной зависимостью. Энергия взаимодействия пары ионов равна сумме энергии притяжения и энергии отталкивания: . Энергия притяжения противоположных по знаку зарядов в зависимости от расстояния между ними определяется законом Кулона: , где r – расстояние между центрами ионов, e – заряд электрона, k – константа в законе Кулона. Энергию отталкивания М.Борн (M.Born) предложил определять по формуле , где B - постоянная величина, n – коэффициент борновского отталкивания. Таким образом, энергия двух взаимодействующих ионов в зависимости от расстояния между их центрами будет равна: . Энергия химической связи пары ионов (E св) соответствует минимуму энергии системы, который достигается на расстоянии между ионами, равном длине связи (r = r св) (рис. 3.7). Рис. 3.7. Энергия взаимодействия пары ионов в зависимости от расстояния между ними
Постоянную B можно определить из условия равенства нулю первой производной функции в точке минимума: , . Тогда величина энергии химической связи пары ионов будет равна: . Для определения энергии кристаллической решетки необходимо учесть, что один моль вещества содержит N А (число Авогадро) пар ионов. Кроме того, необходимо учесть энергию взаимодействия каждого иона как с ближайшими, так и с более удаленными ионами. Вклад этого взаимодействия зависит от типа кристаллической решетки и учитывается с помощью множителя А, который называется постоянной Маделунга. Таким образом, энергия кристаллической решетки, образованной однозарядными ионами, определяется уравнением (уравнение Борна) , где А – постоянная Маделунга, для кристаллической решетки типа NaCl (ГЦК) A =1, 7475, типа CsCl (ПК) A =1, 763; n – коэффициент борновского отталкивания определяется из сжимаемости кристалла – относительного уменьшения его объема при увеличении давления. Для галогенидов щелочных металлов n = 6 – 12. Реальные ионы в узлах кристаллической решетки не являются недеформирующимися шарами. Для более точного расчета величины энергии кристаллической решетки необходимо учитывать эффекты, связанные с деформацией ионов, которая приводит к разделению центров положительных и отрицательных зарядов, то есть при рассмотрении взаимодействия точечных зарядов необходимо учесть взаимодействие диполей. Вклад этих эффектов невелик и составляет единицы процентов. Электростатическая модель дает хорошее совпадение с экспериментальными результатами для кристаллов галогенидов щелочных металлов (табл. 3.3). Таблица 3.3
|