Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КОНТРОЛЬНАЯ РАБОТА №1. 1. Решить систему линейных уравнений методом Гаусса





 

 

1. Решить систему линейных уравнений методом Гаусса.

 

Решение. Первое уравнение умножается на (-2) и прибавляется ко второму уравнению, затем первое уравнение умножается на (-3) и прибавляется к третьему. Таким образом, неизвестное х исключается из двух последних уравнений. Эти преобразования лучше показать на расширенной матрице

.

 

Вычтя во второй матрице из третьей строки удвоенную вторую, мы исключаем неизвестное у из третьего уравнения. После таких преобразований получается система

Из третьего уравнение легко находится . Затем из второго уравнения получаем . Наконец, из третьего уравнения получаем .

Нетрудно проверить, что совокупность , , является решением данной системы.

 

2. Определить тип кривой , найти ее параметры; определить угловой коэффициент прямой . Найти точки пересечения данных линий и сделать чертеж.

 

Решение. Приведем уравнение кривой к каноническому виду , разделив на 225. Получим уравнение эллипса . Его большая полуось , малая полуось . Центр совпадает с началом координат.

Уравнение прямой имеет вид «в отрезках» , что удобно для построения. Для нахождения углового коэффициента прямой приведем ее к виду , выразим у через х: .

Угловой коэффициент .

Для нахождения точек пересечения этих линий решим систему

Возведем второе уравнение в квадрат

и подставим в первое уравнение:

Нашли точки пересечения (0; 3) и (5; 0), что наглядно видно на чертеже.

 

у

 

 
 


–5 0 5 х

 

-3

 

 

3. Даны координаты вершин пирамиды АВСD:

Требуется:

1) записать векторы в системе орт и найти модули этих векторов;

2) найти угол между векторами и ;

3) найти проекцию вектора на вектор ;

4) найти площадь грани АВС;

5) найти объем пирамиды АВСD;

6) составить уравнение ребра АС;

7) составить уравнение грани АВС.

 







Дата добавления: 2014-10-22; просмотров: 1458. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия