Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1) Для того чтобы построить вариационный ряд, сначала находят , и размах вариационного ряда , затем определяют число интервалов





1) Для того чтобы построить вариационный ряд, сначала находят , и размах вариационного ряда , затем определяют число интервалов по формуле с округлением до ближайшего целого числа. В нашем случае . Возьмём . Длина каждого интервала вычисляется по формуле . Число всегда округляют с избытком.

В рассматриваемом примере Положим .

Границы интервалов последовательно вычисляют по формулам .

Для каждого i-го интервала подсчитывают количество попавших в него данных . Если выборочное данное совпадает с границей двух соседних интервалов, то его следует отнести к интервалу с меньшим номером. Затем вычисляют относительные частоты . Таким образом, получаем вариационный ряд (см. таблицу 2).

 

Таблица 2.

№ интервала интервалы Частоты
                (64, 00; 65, 08)   (65, 08; 66, 16)   (66, 16; 67, 24)   (67, 24; 68, 32)   (68, 32; 69, 40)   (69, 40; 70, 48)   (70, 48; 71, 56) 8   11     14     20     17     16     4                          

 

2) В качестве оценки математического ожидания (генеральной средней) берётся среднее арифметическое выборочных данных .

За оценку дисперсии берётся исправленная выборочная дисперсия

, где .

Этими формулами пользуются в случае небольшого объёма выборки (). При выполнении расчётов при большом объёме выборки, то есть когда уже построен вариационный ряд вычисляется по формуле

, (1)

где - середина i-го интервала. Исправленная дисперсия вычисляется по формуле , где

 

. (2)

 

Вычисления по формулам (1) и (2), как правило, сложны, поэтому для упрощения расчётов переходят от величин к величинам по формуле

.

Величину выберем следующим образом:

, если – четное,

, если – нечетное.

При таком выборе формулы перехода величины будут принимать последовательные целые значения, близкие к нулю (см. таблицу 3).

 

Таблица 3.

64, 540 65, 620 66, 700 67, 780 68, 860 69, 940 71, 020   -3 -2 -1 -24 -22 -14   0, 08 0, 11 0, 15 0, 20 0, 18 0, 17 0, 04 0, 04 0, 10 0, 18 0, 22 0, 19 0, 12 0, 05
           

 

В нашем случае С= =67, 78, вычисляем ,

, ; затем по формулам

, ,

найдём

 

3) Гистограммой относительных частот называется ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат интервалы длиной , расположенные на оси Ох, а высоты равны .

Соединив середины верхних сторон прямоугольников плавной линией, получим аналог плотности распределения случайной величины (график эмпирической плотности распределения).

 

4) По виду кривой эмпирического распределения («колоколообразная» кривая) можно предположить, что случайная величина распределена по нормальному закону. Для сравнения в той же системе координат построим кривую плотности нормального распределения:

 

, где

Мы использовали значения, полученные во втором пункте.

В случае нормального распределения величины вероятность того, что отклонение от окажется больше, чем величина , должна быть очень мала, близка к нулю. Это означает, что практически почти все значения выборочных данных должны попасть в интервал , в нашем случае - в интервал (62, 53; 73, 27).

Так как в рассматриваемом примере все выборочные значения попадают в указанный интервал, то есть основание считать, что случайная величина распределена по нормальному закону с плотностью вероятности . Для сравнения построим график этой функции, предварительно вычислив значения этой функции в точках (см. последний столбец таблицы 3). Найдём также максимум этой функции: 3.

 

 


 


ПРИЛОЖЕНИЯ

Продолжение таблицы значений функции Ф(х)

ОГЛАВЛЕНИЕ

 

Таблицы вариантов………………………………………………………………  
Задания для контрольных работ. Контрольная работа №1…………………...  
Контрольная работа №2…………………………………………………………  
Решение типовых примеров. Контрольная работа №1….…………………….  
Решение типовых примеров. Контрольная работа №2….…………………….  
Приложения………………………………………………………………………  

 







Дата добавления: 2014-10-22; просмотров: 1214. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия