Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1) Область определения функции





1) Область определения функции

.

2) Исследование на непрерывность и классификация точек разрыва.

Заданная функция непрерывна всюду, кроме точки х = 4. Вычислим ее односторонние пределы в этой точке:

Таким образом, точка х = 4 является для заданной функции точкой разрыва второго рода, а прямая х = 4 – вертикальной асимптотой графика.

3) Исследование на экстремум и промежутки монотонности.

 

х –2 (–2; 4)   (4; 10)  
+ + не сущ.   +
max   min

 

.

4) Исследование графика на выпуклость, вогнутость, точки перегиба.

Так как , то график заданной функции точек перегиба не имеет. Остается выяснить вопрос об интервалах его выпуклости и вогнутости:

х  
не сущ. +
 

 

 

5) Исследование графика на наличие наклонных асимптот.

Таким образом, прямая – наклонная асимптота графика.

6) График заданной функции пересекает ось Оу в точке (0; –5).

По результатам исследования строим график.

 
 

 


у

 

 

 

-4 4 х

 

 

5. Решить систему двух линейных уравнений в области комплексных чисел по формулам Крамера. Найденные изобразить на комплексной плоскости; в виде векторов и записать в показательной и тригонометрической формах.

 

Решение. Найдем решение системы линейных уравнений по формулам Крамера . Для этого вычислим главный определитель системы и определители , учитывая, что – комплексное число, где .

Находим :

(т.к. );

Таким образом, решение данной системы уравнений в алгебраической форме записи:

в векторной форме записи

у

 

 

0, 5

х

-2 0 3, 5

 

 

-2

Найдем модуль и аргумент комплексных чисел ( или ; в 1 и 4 четвертях; во 2 и 3 четвертях, знак «+» или «–» выбираем так, чтобы аргумент был наименьшим по модулю).

Число принадлежит 3 четверти:

(аргумент );

(модуль ).

Число принадлежит 1 четверти:

;

Запишем числа в показательной и тригонометрической формах:

 

6. а) Вычислить площадь фигуры, расположенной в первом квадранте и ограниченной параболой , прямой и осью Ох.

б) Найти объем тела, образованного вращением этой фигуры вокруг оси Ох.







Дата добавления: 2014-10-22; просмотров: 908. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия