Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения Лагранжа 2-го рода





2.6.1. Краткие теоретические сведения

Уравнения Лагранжа 2-го рода обычно применяют для исследования движения механических систем с несколькими степенями свободы, но такие исследования выходят за рамки изучаемого курса теоретической механики. Поэтому с целью приобретения некоторых навыков в составлении уравнений Лагранжа для механических систем с n степенями свободы ограничимся применением этих уравнений при определении основных кинематических и динамических параметров систем с одной степенью свободы.

Уравнения Лагранжа 2-го рода для механических систем с идеальными, стационарными, голономными и удерживающими связями, имеют вид:

, (2.49)

где q – обобщенная координата системы, однозначно определяющая ее положение (число независимых обобщенных координат соответствует числу степеней свободы системы); – обобщенная скорость, первая производная по времени от обобщенной координаты; – обобщенная сила, соответствующая выбранной обобщенной координате. Ее можно найти по формуле

, (2.50)

где – сумма работ всех активных сил, в том числе и сил трения, на элементарном приращении обобщенной координаты q.

Размерность обобщенной силы зависит от размерности обобщенной координаты. Если обобщенная координата имеет размерность длины (м), то обобщенную силу измеряют в Ньютонах (Н); если обобщенная координата имеет размерность угла (рад), то сила имеет размерность момента (Н∙ м).

В предлагаемых в 4-м разделе настоящего пособия заданиях кинетическая энергия системы не зависит от обобщенной координаты , поэтому

и .

2.6.2. Последовательность решения задач на уравнения

Лагранжа 2-го рода

Задачи, посвященные исследованию движения механических систем с одной степенью свободы с применением уравнений Лагранжа 2-го рода, рекомендуют решать в такой последовательности:

1) выбрать обобщенные координаты, линейные или угловые перемещения в зависимости оттого, что нужно определить по условию задачи – линейное или угловое ускорение; записать уравнение Лагранжа 2-го рода с учетом выбранной обобщенной координаты и обобщенной скорости;

2) изобразить механическую систему и показать на схеме все активные силы и силы трения, действующие на эту систему;

3) дать элементарное приращение соответствующей обобщенной координате системы;

4) вычислить сумму работ всех активных сил и сил трения на соответствующих элементарных перемещениях и определить обобщенную силу с учетом того, что зависимость между элементарными перемещениями такая же, как и между соответствующими скоростями;

5) вычислить кинетическую энергию системы, выразив ее через соответствующую обобщенную скорость;

6) найти частную производную от кинетической энергии по обобщенной скорости, а затем производную по времени от полученного выражения;

7) подставить найденные значения в уравнение Лагранжа и определить линейное или угловое ускорение.

 

Вопросы для самоконтроля

 

1. Что называют механической системой?

2. Какие существуют виды связей?

3. Как классифицируют силы, действующие на механическую систему?

4. Какие свойства имеют внутренние силы?

5. Что называют центром масс механической системы?

6. Какой вид имеет выражение для теоремы о движении центра

масс механической системы в векторной форме?

7. Какой вид имеет выражение для теоремы о движении центра

масс механической системы в проекциях на оси декартовой системы координат?

8. Какие существуют виды моментов инерции и в чем их отличие?

9. По каким формулам определяют осевые моменты инерции некоторых простейших тел?

10. Что называют кинетическим моментом механической системы?

11. Какой вид имеет выражение для теоремы об изменении кинетического момента механической системы в векторной форме?

12. Какой вид имеет выражение для теоремы об изменении кинетической энергии механической системы в интегральной форме?

13. По какой формуле определяют кинетическую энергию тела, совершающего поступательное движение?

14. По какой формуле определяют кинетическую энергию тела, совершающего вращательное движение?

15. По какой формуле определяют кинетическую энергию тела, совершающего плоскопараллельное движение?

16. Как определяют работу силы тяжести?

17. Как определяют работу силы на прямолинейном конечном перемещении?

18. Как определяют работу силы трения скольжения?

19. Как определяют работу пары сил сопротивлению качения?

20. В каком случае работа силы на прямолинейном перемещении равна нулю?

21. В каком случае работа силы тяжести равна нулю?

22. Что называют обобщенной координатой механической системы?

23. Что называют обобщенной скоростью механической системы?

24. Что называют числом степеней свободы механической системы?

25. Как выразить сумму элементарных работ системы через обобщенные силы?

26. Как определить обобщенную силу?

27. Какую размерность имеет обобщенная сила, если обобщенной координатой является линейное перемещение?

28. Какую размерность имеет обобщенная сила, если обобщенной координатой является угловое перемещение?

29. Какой вид имеет уравнение Лагранжа 2-го рода для системы с одной степенью свободы?

 

 







Дата добавления: 2014-10-29; просмотров: 2155. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия