Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Меры движения точки и механической системы





К мерам движения относят следующие характеристики их инертности и движения: количество движения (импульс) точки и системы, кинетический момент (момент количества движения) точки и системы относительно точки и оси, кинетическую энергию точки и системы.

2.3.1. Количество движения точки и механической системы

Количеством движением точки называют векторную величину, равную произведению массы точки на ее скорость

. (2.15)

Количеством движением механической системы называют сумму количеств движений всех ее точек

. (2.16)

Эту величину можно выразить и через скорость центра масс (2.4)

. (2.17)

Размерность количества движения – кг·м/с.

2.3.2. Кинетический момент точки и механической системы

Кинетическим моментом или моментом количества движения материальной точки относительно некоторого центра О (рис. 2.6) называют векторную величину , равную векторному произведению радиус-вектора точки , проведенного к ней из центра О, на вектор количества движения этой точки

. (2.18)

Модуль кинетического момента точки

. (2.19)

Кинетическим моментом материальной точки относительно оси называют проекцию на эту ось, например, Oz, кинетического момента относительно любой точки на этой же оси

. (2.20)

Значение кинетического момента положительное, если вращение перпендикуляра вектором наблюдается с положительного направления, например, оси Oz, против хода часовой стрелки; отрицательное – если наоборот. Значение, равное нулю, будет иметь место, когда вектор лежит в одной плоскости с соответствующей осью.

Кинетическим моментом механической системы относительно точки или оси называют сумму кинетических моментов всех точек системы относительно точки

(2.21)

или оси, например, оси Ох

. (2.22)

Кинетический момент тела вращения относительно его неподвижной оси, например, оси Oz, равен произведению момента инерции тела относительно этой оси на его угловую скорость

. (2.23)

2.3.3. Кинетическая энергия точки и механической системы

Кинетической энергией материальной точки называют скалярную величину, равную половине произведения массы точки на квадрат ее скорости

. (2.24)

Кинетической энергией механической системы материальных точек называют сумму кинетических энергий всех точек этой системы

. (2.25)

Она равна нулю, если все точки системы в какой-то момент времени неподвижны.

Запишем выражения для кинетической энергии тела, совершающего

– поступательное движение

, (2.26)

где М – масса тела, v – его скорость;

 

– вращательное движение

, (2.27)

где – момент инерции тела относительно оси вращения, ω – его угловая скорость;

– плоскопараллельное движение

, (2.28)

где – момент инерции тела относительно оси, проходящей через центр масс и перпендикулярной плоскости движения тела; ω – его угловая скорость; М – его масса; – скорость центра масс.

Размерность кинетической энергии – Джоуль, 1 Дж = 1 Н∙ м.

 







Дата добавления: 2014-10-29; просмотров: 2002. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия