Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения движения материальной точки





Свободной называют точку, на которую не наложены связи. В противном случае точка является несвободной и тогда, согласно принципу освобождаемости от связей к точке прикладывают реакции отброшенных связей, кроме активных сил.

Если на свободную точку действует система активных сил, равнодействующая которой , то согласно 2-му закону Ньютона следует, что

. (1.1)

Полученное выражение называют основным уравнением динамикисвободной материальной точки в векторной форме.

Если движение точки задано в векторной форме , то, как известно из раздела кинематики,

(1.2)

и формулу (1.1) можно записать следующим образом

. (1.3)

Нужно отметить, что в общем случае сила может быть функцией времени, положения и скорости точки

. (1.4)

Равенство (1.3) представляет собой векторное дифференциальное уравнение движения свободной материальной точки. В проекциях на оси инерциальной декартовой системы координат оно примет вид:

. (1.5)

При движении точки в плоскости xOy, так как , систему уравнений можно записать так:

. (1.6)

Если точка движется прямолинейно вдоль какой-либо оси, например Ox, так как , получим

. (1.7)

В проекциях на оси (касательную, нормаль и бинормаль к траектории точки) естественной системы координат равенство (1.3) запишем следующим образом

. (1.8)

Из кинематики известно, что

. (1.9)

Поэтому рассматриваемые выражения примут вид:

, (1.10)

где – уравнение движения точки по соответствующей траектории; ρ – радиус кривизны траектории; – проекции равнодействующей сил, приложенных к точке на оси естественной системы координат.

Если точка несвободна то на нее, кроме равнодействующей активных сил , будет действовать равнодействующая реакций связей . Тогда уравнение (1.1) запишем так:

. (1.11)

Полученное выражение называют основным уравнением динамикинесвободной материальной точки в векторной форме. Оно принимает такой вид:

– в проекциях на оси декартовой системы координат

; (1.12)

– в проекциях на оси естественной системы координат

(1.13)

или

. (1.14)

 







Дата добавления: 2014-10-29; просмотров: 1093. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия