Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения движения материальной точки





Свободной называют точку, на которую не наложены связи. В противном случае точка является несвободной и тогда, согласно принципу освобождаемости от связей к точке прикладывают реакции отброшенных связей, кроме активных сил.

Если на свободную точку действует система активных сил, равнодействующая которой , то согласно 2-му закону Ньютона следует, что

. (1.1)

Полученное выражение называют основным уравнением динамикисвободной материальной точки в векторной форме.

Если движение точки задано в векторной форме , то, как известно из раздела кинематики,

(1.2)

и формулу (1.1) можно записать следующим образом

. (1.3)

Нужно отметить, что в общем случае сила может быть функцией времени, положения и скорости точки

. (1.4)

Равенство (1.3) представляет собой векторное дифференциальное уравнение движения свободной материальной точки. В проекциях на оси инерциальной декартовой системы координат оно примет вид:

. (1.5)

При движении точки в плоскости xOy, так как , систему уравнений можно записать так:

. (1.6)

Если точка движется прямолинейно вдоль какой-либо оси, например Ox, так как , получим

. (1.7)

В проекциях на оси (касательную, нормаль и бинормаль к траектории точки) естественной системы координат равенство (1.3) запишем следующим образом

. (1.8)

Из кинематики известно, что

. (1.9)

Поэтому рассматриваемые выражения примут вид:

, (1.10)

где – уравнение движения точки по соответствующей траектории; ρ – радиус кривизны траектории; – проекции равнодействующей сил, приложенных к точке на оси естественной системы координат.

Если точка несвободна то на нее, кроме равнодействующей активных сил , будет действовать равнодействующая реакций связей . Тогда уравнение (1.1) запишем так:

. (1.11)

Полученное выражение называют основным уравнением динамикинесвободной материальной точки в векторной форме. Оно принимает такой вид:

– в проекциях на оси декартовой системы координат

; (1.12)

– в проекциях на оси естественной системы координат

(1.13)

или

. (1.14)

 







Дата добавления: 2014-10-29; просмотров: 1093. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия