Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения движения материальной точки





Свободной называют точку, на которую не наложены связи. В противном случае точка является несвободной и тогда, согласно принципу освобождаемости от связей к точке прикладывают реакции отброшенных связей, кроме активных сил.

Если на свободную точку действует система активных сил, равнодействующая которой , то согласно 2-му закону Ньютона следует, что

. (1.1)

Полученное выражение называют основным уравнением динамикисвободной материальной точки в векторной форме.

Если движение точки задано в векторной форме , то, как известно из раздела кинематики,

(1.2)

и формулу (1.1) можно записать следующим образом

. (1.3)

Нужно отметить, что в общем случае сила может быть функцией времени, положения и скорости точки

. (1.4)

Равенство (1.3) представляет собой векторное дифференциальное уравнение движения свободной материальной точки. В проекциях на оси инерциальной декартовой системы координат оно примет вид:

. (1.5)

При движении точки в плоскости xOy, так как , систему уравнений можно записать так:

. (1.6)

Если точка движется прямолинейно вдоль какой-либо оси, например Ox, так как , получим

. (1.7)

В проекциях на оси (касательную, нормаль и бинормаль к траектории точки) естественной системы координат равенство (1.3) запишем следующим образом

. (1.8)

Из кинематики известно, что

. (1.9)

Поэтому рассматриваемые выражения примут вид:

, (1.10)

где – уравнение движения точки по соответствующей траектории; ρ – радиус кривизны траектории; – проекции равнодействующей сил, приложенных к точке на оси естественной системы координат.

Если точка несвободна то на нее, кроме равнодействующей активных сил , будет действовать равнодействующая реакций связей . Тогда уравнение (1.1) запишем так:

. (1.11)

Полученное выражение называют основным уравнением динамикинесвободной материальной точки в векторной форме. Оно принимает такой вид:

– в проекциях на оси декартовой системы координат

; (1.12)

– в проекциях на оси естественной системы координат

(1.13)

или

. (1.14)

 







Дата добавления: 2014-10-29; просмотров: 1093. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия