Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интеграл Мора для определения перемещений





Определим потенциальную энергию бруса при чистом изгибе. Рассмотрим бесконечно малый отрезок балки длиной dz (см. рис. 11.4). Под действием момента он изогнется и радиус кривизны составит, а крайние сечения составят угол d.

Рис. 11.4

Из теоретической механики известно, что работа, совершаемая моментом, равна произведению момента на угол поворота:

где - потенциальная энергия отрезка dz балки.

Множитель 1/2 берется потому, что с возрастанием момента М прямо пропорционально возрастает угол d, т.е. момент - не постоянная величина, он изменяется от нуля до конечного значения М.

Из рис.11.4 видно:

Тогда, подставив вместо в формулу (11.14), получим:

По формуле (10.2) имеем:

1/ =M/EI,

где Е - модуль продольной упругости,

I - осевой момент инерции сечения.

Подставив в формулу (11.15), получим:

,

Для определения потенциальной энергии балки необходимо взять интеграл по ее длине:

Если пренебречь перемещениями от поперечной силы, то от силы в сечениях балки будут возникать моменты . Тогда потенциальная энергия будет равна:

,

а от силы :

.

Пусть к балке приложены силы , тогда потенциальная энергия равна:

Согласно закона сохранения энергии, потенциальная энергия равна совершаемой работе:

W = U; W11 = U11; W2 2= U22.

Поэтому из формул (11.11) и (11.17) следует:

Как известно, если работу совершает сила, то она равна произведению силы на перемещение, а если момент - произведению момента на угол поворота. Поэтому для первого случая:

,

для второго:

.

При нагружении балки силой , из формулы (11.18) получим:

Из формулы (11.19) следует, что если =1 (безразмерная величина), то перемещение в точке приложения силы можно определить по формуле:

где М1 - момент от единичной силы,

- перемещение в точке приложения единичной силы от силы .

Поскольку к балке может быть приложена различная нагрузка, то формулу можно записать следующим образом (формула Мора):

где - перемещение от обобщенной нагрузки,

М1 - момент от единичной силы или единичного момента, приложенных в точке, где следует определить перемещение,

Мp - момент от обобщенной нагрузки.

Используя формулу (11.20), можно определять перемещения в любой точке. Для этого в определяемой точке прикладывается единичная сила, если определяется прогиб, или единичный момент, если определяется угол поворота. Если знак у положительный, то перемещение имеет то же направление, что и единичная сила или момент, если же знак отрицательный - то противоположное.

Пример: Определить прогиб посредине пролета для двухопорной шарнирной балки, нагруженной силой F (см. рис. 11.5).

 

Рис.11.5

Для определения прогиба в точке С, приложим единичную силу и направим ее вверх. Определим моменты от нагрузки:

момент от единичной силы:

Поскольку задача симметричная, то интеграл формулы Мора можно определять от 0 до l /2, умножив на 2:

 

 

Эта формула используется в лабораторной работе № 4.

 







Дата добавления: 2014-10-29; просмотров: 2924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия