Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интеграл Мора для определения перемещений





Определим потенциальную энергию бруса при чистом изгибе. Рассмотрим бесконечно малый отрезок балки длиной dz (см. рис. 11.4). Под действием момента он изогнется и радиус кривизны составит, а крайние сечения составят угол d.

Рис. 11.4

Из теоретической механики известно, что работа, совершаемая моментом, равна произведению момента на угол поворота:

где - потенциальная энергия отрезка dz балки.

Множитель 1/2 берется потому, что с возрастанием момента М прямо пропорционально возрастает угол d, т.е. момент - не постоянная величина, он изменяется от нуля до конечного значения М.

Из рис.11.4 видно:

Тогда, подставив вместо в формулу (11.14), получим:

По формуле (10.2) имеем:

1/ =M/EI,

где Е - модуль продольной упругости,

I - осевой момент инерции сечения.

Подставив в формулу (11.15), получим:

,

Для определения потенциальной энергии балки необходимо взять интеграл по ее длине:

Если пренебречь перемещениями от поперечной силы, то от силы в сечениях балки будут возникать моменты . Тогда потенциальная энергия будет равна:

,

а от силы :

.

Пусть к балке приложены силы , тогда потенциальная энергия равна:

Согласно закона сохранения энергии, потенциальная энергия равна совершаемой работе:

W = U; W11 = U11; W2 2= U22.

Поэтому из формул (11.11) и (11.17) следует:

Как известно, если работу совершает сила, то она равна произведению силы на перемещение, а если момент - произведению момента на угол поворота. Поэтому для первого случая:

,

для второго:

.

При нагружении балки силой , из формулы (11.18) получим:

Из формулы (11.19) следует, что если =1 (безразмерная величина), то перемещение в точке приложения силы можно определить по формуле:

где М1 - момент от единичной силы,

- перемещение в точке приложения единичной силы от силы .

Поскольку к балке может быть приложена различная нагрузка, то формулу можно записать следующим образом (формула Мора):

где - перемещение от обобщенной нагрузки,

М1 - момент от единичной силы или единичного момента, приложенных в точке, где следует определить перемещение,

Мp - момент от обобщенной нагрузки.

Используя формулу (11.20), можно определять перемещения в любой точке. Для этого в определяемой точке прикладывается единичная сила, если определяется прогиб, или единичный момент, если определяется угол поворота. Если знак у положительный, то перемещение имеет то же направление, что и единичная сила или момент, если же знак отрицательный - то противоположное.

Пример: Определить прогиб посредине пролета для двухопорной шарнирной балки, нагруженной силой F (см. рис. 11.5).

 

Рис.11.5

Для определения прогиба в точке С, приложим единичную силу и направим ее вверх. Определим моменты от нагрузки:

момент от единичной силы:

Поскольку задача симметричная, то интеграл формулы Мора можно определять от 0 до l /2, умножив на 2:

 

 

Эта формула используется в лабораторной работе № 4.

 







Дата добавления: 2014-10-29; просмотров: 2924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия