Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приведение плоской системы произвольно расположенных сил к данному центру




Пусть к твердому телу приложена плоская система сил (рис.1.16). Возьмем в теле произвольную точку , ко­торую будем называть центром приведения, и приложим к ней по­парно уравновешенные силы и . Заметим, что силы и образуют при этом пару сил, так что можно считать силу перенесенной параллельно самой себе в точку - за­мененной силой с присоединением пары . Посту­пив так и со всеми оставшимися силами, мы приведем заданную систему сил к совокупности пучка сил , приложенных в точке , и совокупности пар . Сходящиеся силы имеют равнодействующую , приложенную в точке и равную векторной сумме всех сил системы. Эта сумманазывается главным век­тором системы и обозначается .

Пары можно заменить одной результирующей парой с моментом , равным алгебраической суммеих моментов. Так как момент пары равен сумме момен­тов входящих в нее сил относительно любой точки плоскости пары, то для каж­дой из складываемых пар

 

.

 

Поэтому сумма моментов пар равна сумме моментов самих заданных сил отно­сительно точки , которая называется главным момен­том системы относи­тельно этой точки и обозначается . Та­ким образом, систему сил, произ­вольно расположенных на плоско­сти, можно заменить совокупностью одной силы , равной их главному вектору , и приложенной в произвольно выбран­ном центре приведения, и одной пары, момент которой равен главному мо­менту заданных сил относительно центра приве­дения. Это утверждение на­зывается теоремой Пуансо о приведении плоской системы сил к данному цен­тру.

Главный вектор и главный момент системы опре­деляются по формулам:

 

, .







Дата добавления: 2014-10-29; просмотров: 661. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.001 сек.) русская версия | украинская версия