Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Отношения между понятиями. Если объемы понятий а и b не пересекаются, т.е





Если объемы понятий а и b не пересекаются, т.е. если А Ç B = Æ, то понятия а и b несовместимы.

Если объемы понятий а и b находятся в отношении пересечения, т. е. А Ç B ¹ Æ, то понятия а и b совместимы.

Если объем понятия а является собственным подмножеством объема понятия b, т.е. А Ì В и А ¹ В, то говорят, что:

1) понятие а является видовым по отношению к понятию b; понятие b – родовым по отношению к понятию а;

2) понятие а уже понятия b, а понятие b шире понятия а;

3) понятие а есть частный случай понятия b, а понятие b есть обоб­щение понятия а.

Если объем понятия а равен объему понятия b, то говорят, что понятия а и b тождественны.

Большую роль в математике играют определения понятий. Во всяком понятии выделяют определяемое и определяющее понятия. Например, в предложении «Прямоугольником называется параллелограмм с прямым углом» определяемое понятие – «прямоугольник» (т.е. что определяется), а определяющее понятие – «параллелограмм с прямым углом» (т.е. то, через что определяется данное понятие).

Между определяемым и определяющим понятиями ставится знак , который читается «равносильно по определению». Данное нами определение можно записать так: «прямоугольник параллелограмм с прямым углом».

Одним из видов определений является определение через род и видовое отличие. Структура таких определений такова: в определяющем понятии указывается: 1) родовое по отношению к определяемому понятие и 2) то свойство, которое выделяет нужный нам вид из других видов данного нам рода (так называемое видовое отличие). Так, в рассмотренном выше примере родовым понятием является понятие «параллелограмм», а видовым отличием – свойство «иметь прямой угол».

Определение понятия через род и видовое отличие можно изобразить схематически.

Å







Дата добавления: 2014-11-10; просмотров: 1199. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия