Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

II. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ





Литература: [1] гл. 1, §2, §3, §4

 

1. ВЫСКАЗЫВАНИЯИ ПРЕДИКАТЫ. __________________________________________________________________

Определение 1. Высказыванием называют любое повествовательное предложение, о котором имеет смысл говорить, истинно оно или ложно.

_____________________________________________________________________________________________

Современная математическая логика включает в себя логику высказываний и логику предикатов.

Высказывание принято обозначать прописными буквами латинского алфавита: А, В, С и т.д. Если высказывание А истинно, то записывают А – «И», если высказывание А ложно, то записывают А – «Л».

Если заданы высказывания А и В, то из них можно составить новое высказывание, используя логические связки «и», «или», «если..., то», «тогда и только тогда, когда», а также частицу «не». Такие высказывания называют составными, а входящие в них высказывания А и В – элементарными высказываниями. Логические связки (или логические операции) принято обозначать соответственно специальными символами (Ù, Ú, ®, «, –).

Составные высказывания, образованные из высказываний А и В, определяются следующими таблицами истинностей.

Состав­ное высказывание     Читается     Название высказывания   Таблица истинности
  АÙ В       А и В         Конъюнкция высказываний   А В АÙ В
И И И
И Л Л
Л И Л
Л Л Л
аÚ в   А или В       Дизъюнкция высказываний   А В АÚ В
И И И
И Л И
Л И И
Л Л Л
    А®В         Если А, то В       Импликация высказываний   А В А ® В
И И И
И Л Л
Л И И
Л Л И
    А «В     А тогда и только тогда, когда В         Эквиваленция высказываний   А В А «В
И И И
И Л Л
Л И Л
Л Л И
          Неверно, что А     Отрицание высказывания А   А
И Л
Л И

 

Два составных высказывания А и В называются равносильными, если они одновременно истинны или одновременно ложны при любых предположениях об истинности входящих в них элементарных высказываний. В этом случае пишут А = В.

Свойства составных высказываний:

 

Для конъюнкции   Названия свойства Для дизъюнкции
А Ù В = ВÙ А Коммутативность АÚ В = ВÚ А
А Ù (ВÙ С) = (А Ù В) Ù С = = А Ù ВÙ С   Ассоциативность АÚ (ВÚ С) = (АÚ В)Ú С = = АÚ ВÚ С

 

Есть свойства, связывающие эти две операции:

(АÚ В)Ù С = (АÙ С)Ú (ВÙ С) – дистрибутивность конъюнкции относительно дизъюнкции;

(АÙ В)Ú С = (АÚ С) Ù (ВÚ С) – дистрибутивность дизъюнкции относительно конъюнкции.

Для отрицания высказываний можно записать равносильности:

1. =А – любое высказывание А равносильно высказыванию

2. А Ù = Л, в этом случае говорят, что формула А и тождественно ложна.

3. А Ú = И, в этом случае говорят, что формула А или тождественно истинна. Операции конъюнкция, дизъюнкция и отрицание высказываний связаны следующими соотношениями:

.

Эти отношения называют законами де Моргана.

Операция импликации двух высказываний может быть выражена через операции отрицания и дизъюнкции:

А ® В = Ú В.

Для импликации высказываний имеет место закон контрапозиции: А ® В = ®

Все эти свойства доказываются с помощью таблиц истинности.







Дата добавления: 2014-11-10; просмотров: 949. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия