Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДЕКАРТОВО УМНОЖЕНИЕ МНОЖЕСТВ





Назовем (х, у) упорядоченной парой, а х и у – компонентами этой пары. При этом считают, что 1 у1) = (х22), если х1 = х2 и у1 = у2.

 

__________________________________________________________________

Определение 9. Декартовым произведением множеств А и В назы­вают множество А´ В, элементами которого являются все пары(х, у), такие, что х Î А, уÎ В, т.е. А´ В = {(х, у)/хÎ А, уÎ В}.

_____________________________________________________________________________________________

Найдем, например, декартово произведение множеств А = {1, 3} и В ={2, 4, 6}.

А´ В = {(1, 2); (1, 4); (1, 6); (3, 2); (3, 4); (3, 6)}.

Операцию, при помощи которой находят декартово произведе­ние, называют декартовым умножением множеств.

Декартово умножение множеств не обладает ни свойством комму­тативности, ни свойством ассоциативности, но связано с операциями объединения и вычитания множеств дистрибутивными свойствами:

для любых множеств А, В, С имеют место равенства:

(А È В)´ С = (А´ С) È (В´ С),

(А\В)´ С = (А´ С)\(В´ С).

Для наглядного представления декартова произведения числовых множеств часто используют прямоугольную систему координат.

Пусть А и В – числовые множества. Тогда элементами декартова произведения этих множеств будут упорядоченные пары чисел. Изобразив каждую пару чисел точкой на координатной плоскости, получим фигуру, которая и будет наглядно представлять декартово произведение множеств А и В.

Изобразим на координатной плоскости декартово произведение множеств А и В, если:

a) A = {2, 6}; B ={1, 4}, б) А = {2, 6}; В = [1, 4], в) А = [2, 6]; B =[1, 4].

В случае а) данные множества конечны и можно перечислить элементы декартова произведения.

А´ В = {(2, 1); (2, 4); (6, 1); (6, 4)}. Построим оси координат и на оси ОХ отметим элементы множества А, а на оси ОУ – элементы множества В. Затем изобразим каждую пару чисел множества А´ В точкам на координатной плоскости (рис.7). Полученная фигура из четыре точек и будет наглядно представлять декартово произведение данных множеств А и В.

В случае б) перечислить все элементы декартова произведения множеств невозможно, т.к. множество В – бесконечное, но можно представить процесс образования этого декартова произведения: в каждой паре первая компонента либо 2, либо 6, а вторая компонента – действительное число из промежутка [1, 4].

Все пары, первая компонента которых есть число 2, а вторая пробегает значение от 1 до 4 включительно, изображаются точками отрезка СД, а пары, первая компонента которых есть число 6, а вторая – любое действительное число из промежутка [1, 4], – точками отрезка РS (рис.8). Таким образом, в случае б) декартово произведение множеств А и В на координатной плоскости изображается в виде отрезка СД и РS.

 

 

Рис. 7 Рис. 8 Рис. 9

Случай в) отличается от случая б) тем, что здесь бесконечно не только множество В, но и множество А, поэтому, первой компонентой пар, принадлежащих множеству А ´ В, является любое число из промежутка [2, 6]. Точки, изображающие элементы декартова произведения множеств А и В, образуют квадрат СДЕL (рис. 9). Чтобы подчеркнуть, что элементы декартова произведения изображаются точками квадрата, его можно заштриховать.

 

Контрольные вопросы

1. Покажите, что решение следующих задач приводит к образованию декартова произведения множеств:

а) Запишите все дроби, числителем которых является число из множества А = {3, 4}, а знаменателем – число из множества В = {5, 6, 7}.

б) Запишите различные двузначные числа, используя числа 1, 2, 3, 4.

2. Докажите, что для любых множеств А, В, С справедливо раве­нство (А È В)´ С = (А´ С) È (В´ С). Проиллюстрируйте его выпол­нимость для множеств А = {2, 4, 6}, В= {1, 3, 5}, С = {0, 1}.

3. Какую фигуру образуют точки на координатной плоскости, если их координаты являются элементами декартова произведения множеств А = {– 3, 3} и В = R

4. Определите, декартово произведение каких множеств А и В изо­бражено на рисунке 10.

а) б) в)

Рис. 10







Дата добавления: 2014-11-10; просмотров: 6554. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия