Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнения. 112. Запишите все двузначные числа, цифры десятков которых принадлежат множеству А = {1, 3, 5}, а цифры единиц – множеству В = {2,4,6}





112. Запишите все двузначные числа, цифры десятков которых принадлежат множеству А = {1, 3, 5}, а цифры единиц – множеству В = {2, 4, 6}.

113. Напишите все дроби, числители которых выбираются из множества А= {3, 5, 7}, а знаменатель – из множества В= {4, 6, 8}.

114. Напишите все правильные дроби, числители которых выбираются из множества А = {3, 5, 7}, а знаменатель – из множества В= {4, 6, 8}.

115. Даны множества Р = {1, 2, 3}, К= {а, b}. Найдите все декартова произведения множеств Р´ К и K´ Р.

116.Известно, что А´ В = {(1, 2); (3, 2); (1, 4); (3, 4); (1, 6); (3, 6)}. Установите, из каких элементов состоят множества А и В.

117.Запишите множества (А´ В)´ С и А´ (В´ С) перечислениемпар, если А = {а, b}, B = {3}, C={4, 6}

118. Составьте множества А´ В, В´ А, если:


a )А = {а, b, с}, В={d},

б) A = {a, b}, B = Æ,

в) А= {т, п, k }, В = А,

г) A = {x, y, z}, B = {k, n}


119. Известно, что А´ В = {(2, 3), (2, 5), (2, 6), (3, 3), (3, 5), (3, 6)}. Установите, из каких элементов состоят множества А и В.

120. Найдите декартово произведение множеств А = {5, 9, 4} и В = {7, 8, 6} и выделите из него подмножество пар, в которых:

а) первая компонента больше второй; б) первая компонента равна 5; в) вторая компонента равна 7.

121. Перечислите элементы, принадлежащие декартову произ­ведению множеств А, В и С, если:

а) А = {2, 3}, В = (7, 8, 9}, С = {1, 0};

б) А = В = С = {2, 3};

в) А = {2, 3}, B = {7, 8, 9}, С = Æ

122. Изобразите на координатной плоскости элементы декартова про­
изведения множеств А и В, если:

а) А = {х/х Î N, 2 < х < 4}, В = {х/хÎ N, х < 3};

б) А = {х/хÎ R, 2 < х < 4}, В = {х/хÎ N, х < 3};

в) А = [2, 4]; В = [1, 2].

123. Все элементы декартова произведения двух множеств A и B изображены точками в прямоугольной системе координат. Запишите множества A и В (рис. 11).

 

 

а) б) в)

Рис. 13

124. Изобразите на координатной плоскости элементы декартова произведения множеств X и Y, если:


а) Х={–1, 0, 1, 2}, Y={2, 3, 4};

б) Х={–1, 0, 1, 2}, Y=[2, 4];

в) Х = [–1; 2], Y = {2, 3, 4};

г) Х = [1; 7], Y = [2; 6];

д) X = [–3; 2], Y = [0; 5[;

е) X = R, Y = [–2; 2];

ж) Х= ]–3; 2[, Y=R;

з) Х={2}, Y=R;

и) Х= R, Y = {–3}.


125. Фигуры, приведенные на рис. 14, являются результатом изображения на координатной плоскости декартова произведения множеств X и Y. Укажите для каждой фигуры эти множества.

 

 

 

а) б) в)

 

г) д)

Рис. 14

126. Выясните, декартово произведение каких двух множеств изображается на координатной плоскости в виде полуплоскости. Рассмотрите все случаи.

127. Установите, декартово произведение каких двух множеств изображается на координатной плоскости в виде прямого угла, который образуется при пересечении координатных осей.

128. На координатной плоскости постройте прямую, параллельную оси ОХ и проходящую через точку Р (–2, 3). Установите, декартово произведение каких двух множеств изображается на координатной плоскости в виде этой прямой.

129. На координатной плоскости постройте прямую, параллельную оси ОY и проходящую через точку Р (–2, 3). Установите, декартово произведение каких двух множеств изображается на координатной плоскости в виде этой прямой.

130. На координатной плоскости постройте полосу, ограниченную прямыми, проходящими через точки (–2, 0) и (2, 0) и параллельными оси ОY. Опишите множество точек, принадлежащих этой полосе.

131. На координатной плоскости постройте прямоугольник, вершинами которого служат точки А (–3, 5), В (–3, 8), С (7, 5), D (7, 8). Опишите множество точек этого прямоугольника.

132. Постройте на координатной плоскости множество точек, координаты которых удовлетворяют условию:


а) х Î R, у = 5;

б) х = –3, у Î R;

в) хÎ R, |у| = 2;

г) |x| = 3, у Î R;

д) х Î R, y≥ 4;

е) x Î R, y £ 4;

ж) х Î R, |у| £ 4;

з) |x| £ 4, |у| £ 3;

и) |х| ≥ 1, |у| ≥ 4;

к) |х| ≥ 2, у Î R.


 

133. На координатной плоскости изобразите элементы декартова произведения множеств X и Y, если:

а) X = R, Y = {3}; б) X = R, Y = [–3; 3]; в) X = [0; ), Y = (, 0].

134. На координатной плоскости постройте фигуру F, если


а) F = {(х, у) |х = 2, у Î R}

б) F = {(х, у) | xÎ R, у = –3};

в) F = {(х, у) | х ³ 2, у Î R};

г) F = {(х, у) | х Î К, y≥ – 3};

д) F = {(х, у) | |х| = 2, у Î R};

е) F={(х, у) |х Î R, |у| = 3}.


135. Постройте прямоугольник с вершинами в точках (–3, 4), (–3, –3), (1, –3), (1, 4). Укажите характеристическое свойство точек, принадлежащих этому прямоугольнику.

136. На координатной плоскости постройте прямые, параллельные оси ОХ и проходящие через точки (2, 3) и (2, –1). Установите, декартово произведение каких двух множеств изображается на координатной плоскости в виде полосы, заключенной между построенными прямыми.

137. На координатной плоскости постройте прямые, параллельные оси ОY и проходящие через точки (2, 3) и (–2, 3). Установите, декартово произведение каких двух множеств изображается на координатной плоскости в виде полосы, заключенной между построенными прямыми.

138. Изобразите в прямоугольной системе координат множество X´ Y, если:

a) X = R; Y ={ yç уÎ R, | у | < 3 },

б) Х = { x/xÎ R, | х | > 2}; Y = {у/у Î R, | у | > 4}.

По теме данной главы студент должен уметь:

- задавать множества разными способами;

- устанавливать отношения между множествами и изображать их с помощью диаграмм Эйлера-Венна;

- доказывать равенство двух множеств;

- выполнять операции над множествами и геометрически их иллюстрировать с помощью диаграмм Эйлера-Венна;

- производить разбиение множества на классы с помощью одного или нескольких свойств; оценивать правильность выполненной классификации.

 








Дата добавления: 2014-11-10; просмотров: 2716. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия