Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лимиты и размах




Для быстрой и примерной оценки степени разнообразия часто применяются простейшие показатели:

lim = {min ¸ max} – лимиты, т. е. наименьшее и наибольшее значения признака,

p = (max – min) – размах, или разность между лимитами.

Для группы данных 1, 2, 3, 4, 5 лимиты и размах могут быть обозначены так:

lim = l ¸ 5.

Иногда характеристика разнообразия группы в форме лимитов имеет столь большое производственное значение (например, при упаковке яблок, помидор и т. д., при оценке партии беконных тушек), что кладется в основу денежной оценки продукта.

При проведении параллельных анализов лимиты результатов и их размах служат показателем качества работы лаборанта.

В некоторых случаях лимиты могут служить единственной характеристикой признака.

7.1.4 Приближенные значения μ и s

Если не требуется особой точности, то на основе лимитов можно быстро определить приближенные значения средней арифметической и сигмы.

Средняя арифметическая примерно равна полусумме лимитов:

. (7.6)

Стандартное отклонение примерно равно разности лимитов, деленной на число K, зависящее от численности группы (n):

(7.7)

Число K можно находить по таблице 7.1.

Таблица 7.1 – Числа K, на которые надо разделить размах значений признака, чтобы получить примерное значение среднего квадратического отклонения

n 2 - 5 6 - 15 16 - 49 50 - 200 201 - 1000 > 1000
K

 

Пример

Среди 20 выловленных волков максимальный вес животного оказался 42 кг, минимальный – 30 кг.

кг; кг.

Перечисленные свойства лимитов и размаха показывают, что эти простейшие показатели разнообразия представляют вполне реальный интерес даже при наличии и более точных показателей.







Дата добавления: 2014-11-10; просмотров: 189. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2018 год . (0.001 сек.) русская версия | украинская версия