Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод токов ветвей





• В общем случае токи сложной электрической цепи могут быть определены в результате совместного решения уравнений, составленных по первому и второму законам Кирхгофа. Для однозначного нахождения всех токов необходимо составить в уравнений, где в - число ветвей схемы (без источников тока).

Последовательность расчета следующая:

1. Проводят топологический анализ схемы.

1.1. обозначают токи во всех ветвях (I1, I2, …, ), произвольно выбирают их положительное направление и показывают на схеме стрелками. Число токов -в.

1.2. подсчитывают общее число узлов у и определяют число независимых узлов Nу=у-1 и показывают их на схеме;

1.3. подсчитывают число независимых контуров Nk = в-у+1, и показывают их на схеме дугой.

2. По первому закону Кирхгофа для независимых узлов и по второму закону Кирхгофа для независимых контуров относительно токов ветвей записывают уравнения. После приведения подобных членов они сводятся к системе линейных алгебраических уравнений (ЛАУ)

 
 

 

 


где xi =Ii– искомые токи ветвей; aji – постоянные коэффициенты, зависящие от параметров пассивных элементов схемы; вi – постоянные величины, зависящие от параметров активных элементов схемы.

3. Решая систему из в уравнений относительно токов, по методу Крамера находят токи во всех ветвях схемы:


 

где D – главный определитель системы; D i – определитель, получается из главного D путем замены i -го столбца на столбец свободных членов вi.

Если значения некоторых токов отрицательные, то действительные направления их будут противоположны первоначально выбранным направлениям. I1

Пример 1. Для электрической цепи рис. 1.1 n = 2, m = 3, и расчет токов цепи осуществляется путем решения следующей системы уравнений

Пример 2. Методом непосредственного применения законов Кирхгофа рассчитать токи в схеме на рис.

Число ветвей обозначим m, а число узлов n. Произвольно выбираем положительные направления токов в ветвях и направления обхода контуров. Поскольку в каждой ветви протекает свой ток, то число токов, которое следует определить, а следовательно, и число уравнений, которое нужно составить, равно m. По первому закону Кирхгофа составляем n-1 уравнений. Недостающие m-(n-1) уравнений следует составить по второму закону Кирхгофа для взаимно независимых контуров.


Рис. 2.20. Схема замещения сложной электрической
цепи с несколькими источниками энергии:
I, II, III – номера контуров

1. Проводим топологический анализ.

Она содержит пять ветвей и три узла, m = 5, n = 3. Составляем два уравнения по первому закону Кирхгофу, т. к. n – 1 = 2 (например, для узлов а и б).

2. Составляем уравнения по певому и второму законам Кирхгофа

Для узла " а" - I 1 - I 2 + I 4 = 0.

Для узла " б" - I 1 + I 2 - I 3 - I 5 = 0.

Остальные m - (n - 1) = 3 уравнения составляем по второму закону Кирхгофа.

Для контура I - R 1· I 1 - R 2· I 2 = - E 1 + E 2.

Для контура II - R 2· I 2 + R 3· I 3 + R 4· I 4 = - E 2 - E 3.

Для контура III - - R 3· I 3 + R 5· I 5 = E 3.

Решив систему, состоящую из пяти уравнений, находим пять неизвестных токов. Если какие-либо значения токов оказались отрицательными, то это означает, что действительные направления этих токов противоположны первоначально выбранным.

При расчётах сложных цепей с использованием ЭВМ удобна матричная форма записи. Уравнения, составленные по законам Кирхгофа, запишем в виде

- I 1 - I 2 + 0 + I 4 + 0 = 0

I 1 + I 2 - I 3 + 0 - I 5 = 0

R 1· I 1 - R 2· I 2 + 0 + 0 + 0 = - E 1 + E 2

0 + R 2· I 2 + R 3· I 3 + R 4· I 4 + 0 = - E 2 - E 3

0 + 0 + - R 3· I 3 + 0 + R 5· I 5 = E 3.

В матричной форме

или [ R ]·[ I ] = [ Е ],

где [ R ] – квадратная (5 х 5) матрица, элементами которой являются коэффициенты при неизвестных токах в исходных уравнениях;

[ I ] – матрица - столбец неизвестных токов;

[ E ] – матрица - столбец, элементами которой могут быть алгебраическая сумма ЭДС.

Решение матричного уравнения ищут в виде

[ I ] = [ R ]-1·[ E ],

где [ R ]-1 – матрица, обратная матрице [ R ].

Рассмотренный метод расчета неудобен, если в цепи имеется большое количество узлов и контуров, поскольку потребуется решать громоздкую систему уравнений. В таких случаях рекомендуется применять метод контурных токов, позволяющий значительно сократить число расчетных уравнений 2.







Дата добавления: 2014-11-10; просмотров: 3405. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия