Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод простой итерации




При использовании этого метода исходное нелинейное уравнение (1) необходимо переписать в виде

  (2)

Обозначим корень этого уравнения C*. Пусть известно начальное приближение корня . Подставляя это значение в правую часть уравнения (2), получаем новое приближение

   

и т.д. Для (n+1)- шага получим следующее приближение

  (3)

Таким образом, по формуле (3) получаем последовательность С0, С1,…,Сn+1, которая стремиться к корню С* при n®¥. Итерационный процесс прекращается, если результаты двух последовательных итераций близки, т. е. выполняется условие

  (4)

Исследуем условие и скорость сходимости числовой последовательности {C n} при n®¥. Напомним определение скорости сходимости. Последовательность {Cn}, сходящаяся к пределу С*, имеет скорость сходимости порядка a, если при n®¥ выполняется условие

  (5)

Допустим, что имеет непрерывную производную, тогда погрешность на (n+1)-м итерационном шаге en+1=Cn+1-C*=g(Cn)-g(C*) можно представить в виде ряда

en+1 » Cn+1 – C* = g¢(C*) (Cn-C*) +¼@ g¢(C*) en

Таким образом получаем, что при выполнении условия

  çg¢(C*) ç< 1 (6)

последовательность (3) будет сходиться к корню с линейной скоростью a=1. Условие (6) является условием сходимости метода простой итерации. Очевидно, что успех метода зависит от того, насколько удачно выбрана функция .

Например, для извлечения квадратного корня, т. е. решения уравнения вида x =a2, можно положить

  x=g1(x)=a/x (7а)

или

  x=g2(x)=(x+a/x)/2. (7б)

 

Нетрудно показать, что

½g1'(C)½=1,

½g2'(C)½<1.

Таким образом, первый процесс (7а) вообще не сходится, а второй (7б) сходится при любом начальном приближении С0 >0.

Рис. 2. Графическая интерпретация метода простых итераций для решения уравнения вида x=g(х).

 

Построение нескольких последовательных приближений по формуле (3)

С0, С1, …, Сn = C*

приведено на рисунке 2.







Дата добавления: 2014-11-10; просмотров: 473. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.002 сек.) русская версия | украинская версия