Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Ньютона





В переводной литературе можно встретить название метод Ньютона-Рафсона. Этот метод обладает гораздо более быстрой сходимостью, чем метод простой итерации.

Пусть известно некоторое приближение к корню , так что

   

Тогда исходную систему (2) можно записать следующим образом:

Разлагая уравнение (7) в ряд Тейлора в окрестности точки и ограничиваясь линейными членами по отклонению , получим:

  ,  

или в координатной форме:

  (8)

Систему (8) можно переписать в виде:

  (9)

Полученная система (9) является системой линейных алгебраических уравнений относительно приращений

  .  

Значение функций F1, F2, …, Fn и их производные в (9) вычисляются при

  .  

Определителем системы (9) является якобиан J:

  (10)

Для существования единственного решения системы уравнений (9) он должен быть отличен от нуля. Решив систему (9), например, методом Гаусса, найдём новое приближение:

  .  

Проверяем условие (6). Если оно не удовлетворяется, находим и якобиан (10) с новым приближением и опять решаем (9), таким образом, находим 2-е приближение и т.д.

   

Итерации прекращаются, как только выполнится условие (6).

 







Дата добавления: 2014-11-10; просмотров: 597. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия