Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственный интеграл 1-го рода





Пусть требуется вычислить несобственный интеграл 1рода с погрешностью e.

  (1)

Существует несколько способов вычисления таких интегралов.

Первый способ: делаем такую замену переменных, чтобы превратить бесконечные пределы интегрирования в конечные. Например, для интеграла (1) замена превращает полупрямую в отрезок [0, 1]. Если после преобразования подынтегральная функция вместе с некоторым числом производных остается ограниченной, то можно находить интеграл стандартными численными методами (по формулам Ньютона-Котеса).

Второй способ: представим (1) в виде

  (2)

где b выбираем таким, чтобы выполнялось условие

  (3)

Используя (3), можно сделать оценку b. Первый интеграл в (2) вычисляем по одной из квадратных формул. Так как вблизи верхнего предела подынтегральная функция мала, поэтому вычисление выгодно вести по квазиравномерной сетке, увеличивая шаг при .

Например, требуется вычислить интеграл

   

с точностью . Выбираем b таким, чтобы выполнялось неравенство

   

Так как

   

следовательно, имеем . Поэтому приближенно полагаем

   

и вычисляем последний интеграл численно с погрешностью e.

 







Дата добавления: 2014-11-10; просмотров: 502. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия