Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы решения





 

Численные методы решения дифференциального уравнения (1) – это алгоритмы вычисления приближенных значений искомого решения на некоторой выбранной сетке аргумента . Решение при этом получается в виде таблицы. Численные методы не позволяют найти общего решения уравнения (1). Они дают какое-то частное решение. Это основной недостаток численных методов. Зато эти методы применимы к очень широким классам уравнений и всем типам задач для них.

В основном существуют два широких класса численных методов решения (1) - одноступенчатые и многоступенчатые методы. Одноступенчатые методы используют информацию об искомом решении в одной точке и не производят итераций. К методам этого класса принадлежит и метод Рунге-Кутта. Эти методы являются прямыми (без итераций), что, казалось бы, должно привести к экономии машинного времени, но в действительности эти методы требуют многократных повторных вычислений функции . Кроме того, эти методы имеют тот недостаток, что при их использовании трудно оценивать допускаемую ошибку.

Многоступенчатые методы позволяют получить решение дифференциального уравнения в следующей точке, но не производя так много вычислений функции , как при использовании одноступенчатых методов. Здесь для достижения достаточной точности требуются итерации. Большинство методов этого класса называются методами прогноза и коррекции. Хотя и имеются некоторые трудности, связанные с использованием итерационной процедуры и с получением нескольких начальных точек решения , но они уравновешиваются тем фактом, что оценку ошибки при использовании этого метода легко получить в качестве побочного продукта вычислений.

Численные методы можно применять только к корректно поставленным задачам. Нужно чтобы малые изменения начальных условий приводили бы к достаточно малому изменению интегральных кривых. Если это условие не выполняется, то небольшие изменения начальных условий или эквивалентные этим изменениям небольшие погрешности численного метода могут сильно исказить решение.

Рассмотрим теперь, как решается методом Рунге-Кутта задача Коши (2). Построим семейство схем второго порядка точности и на его примере разберем основные идеи метода. Выберем на отрезке некоторую сетку: значений аргумента так, чтобы выполнялись соотношения (сетка может быть неоднородной). Разлагая решение системы уравнений (2) в ряд Тейлора на интервале сетки , получим:

  , (6)

Здесь введены обозначения: ,

   
   
   

.

Чтобы избежать дифференцирования функции , заменим производную конечной разностью:

,

соответственно выбирая .

После такой замены, объединяя одинаковые члены, приближенное решение (отбрасываем в (6) члены третьего порядка и выше по шагу) можно записать в виде:

  (7)

Для простоты в формуле (7) полагалось, что сетка является равномерной с шагом h. Здесь - параметры, значения которых выбираем таким образом, чтобы минимизировать ошибку метода Рунге-Кутта на каждом шаге . Рассматривая правую часть соотношения (7) как функцию от h, разложим ее в ряд по степеням шага в окрестности точки :

 

    (8)
   

С другой стороны, для точного решения дифференциального уравнения имеем:

  (9)

Оценим погрешность приближенного решения, полученного методом Рунге-Кутта второго порядка точности на одном шаге. Для этого из соотношения (9) вычтем соотношение (8):

  (10)

Чтобы получить схему Рунге-Кутта 2-го порядка точности, необходимо обнулить коэффициенты в 1-ом и 2-ом членах соотношения (10):

  (11)

Выражая через остальные параметры и подставляя их в (7), получим однопараметрическое семейство схем Рунге-Кутта 2-го порядка точности:

  (12)

где

Формула (12) имеет неплохую точность и нередко используется в численных расчетах. При этом обычно полагают либо , либо . Эти два случая часто называют улучшенными (модифицированными) методами Эйлера.

Методом Рунге-Кутта можно строить схемы различного порядка точности. Например, схема ломаных (метод Эйлера) есть схема Рунге-Кутта первого порядка точности. Наиболее употребительными в вычислительной практике являются схемы четвертого порядка точности. Приведем без вывода одну из них, которая записана в большинстве стандартных программ ЭВМ:

  (13)

Схемы Рунге-Кутта имеют ряд важных достоинств:

1) все схемы допускают расчет с переменным шагом, нетрудно уменьшить шаг там, где функция быстро меняется, и увеличить его в обратном случае;

2) для начала расчета достаточно выбрать сетку и задать значение ; далее вычисления идут по одним и тем же формулам. Шаг сетки следует выбирать настолько малым, чтобы обеспечить требуемую точность расчета. Других ограничений на шаг в методе Рунге-Кутта нет.

Встречаются задачи, в которых функции являются достаточно гладкими, но настолько быстро меняющимися, что схема Рунге-Кутта как низкого, так и высокого порядка точности требуют очень малого шага для получения удовлетворительного результата. Такие задачи требуют использования специальных методов, ориентированных на данный узкий класс задач.

 







Дата добавления: 2014-11-10; просмотров: 601. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия