Неравновесных системах
Виды процессов переноса В предыдущих главах мы рассматривали исключительно равновесные свойства вещества или термодинамические процессы, которые квазистатически (т.е. очень медленно) переводят систему из одного равновесного состояния в другое. Мы не рассматривали сами процессы перехода из одного состояния системы в другое.В изолированной макроскопической системе равновесное состояние характеризуется однородным распределением плотности (концентрации) вещества, температуры и отсутствием упорядоченного движения газа или жидкости. Система с неоднородным распределением параметров (плотности, температуры и т.д.) будет стремиться к равновесию, т.е. к состоянию, характеризующемуся неизменностью этих параметров во времени и отсутствием в нем потоков (упорядоченного движения молекул газа или жидкости). Этот процесс называется релаксацией. Процессы выравнивания сопровождаются переносом ряда физических величин (массы, импульса, энергии) и называются потому явлениями переноса. скорость приближения неравновесной системы к равновесию должна быть связана с градиентами соответствующих параметров состояния 1. Эксперимент подтверждает это положение, которое позволяет описать явления диффузии (выравнивание плотности или концентрации за счет переноса массы в объеме), теплопроводности (выравнивание температуры по объему в результате переноса тепловой энергии хаотического движения частиц) и вязкости (выравнивание скоростей движения различных слоев текучей среды в связи с переносом импульса частиц сплошной среды). 1 Если некоторая скалярная величина А распределена в пространстве неравномерно, то быстроту (скорость) изменения этой величины по выбранному направлению характеризует градиент. Градиент величины А () – вектор, направленный в каждой точке пространства в сторону быстрейшего возрастания этой величины, и численно равный изменению А на единицу длины этого направления. Если величина А меняется только вдоль одного направления (Оx), то модуль градиента: . За время dt через площадку, перпендикулярную к направлению переноса (х) будет перенесена некоторая физическая величина dB (масса, импульс, энергия), определяемая уравнением: dS ^× dt, где a - коэффициент пропорциональности, называемый коэффициентом переноса. Знак ² -² означает, что направление возрастания величины А и направление переноса величины В противоположны, т.е. перенос всегда происходит в сторону убыли величины А. Законы переноса массы, энергии и импульса положены в основу теории неравновесных процессов, или физической кинетики. Прежде чем ознакомиться с законами физической кинетики, введем кинематические характеристики, с помощью которых описывается движение молекул в среде.
Число столкновений и средняя длина свободного пробега молекул Молекулы газа, находясь в непрерывном хаотическом движении, сталкиваются друг с другом. Каково же среднее количество столкновений á z ñ за единицу времени, и какова средняя длина пробега молекулы á l ñ от одного столкновения до другого? Минимальное расстояние, на которое могут сблизиться молекулы, называется эффективным диаметром молекулы (d). Он зависит от скорости сталкивающихся молекул, а значит от температуры газа.
(2.1) Для определения á z ñ представим себе такую упрощенную модель: молекула в виде шарика диаметром d, которая движется среди других «застывших» молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d (рис. 2.1). Можно представить, что это будет совершаться в некоторой области, которая по форме будет близка к цилиндру. В объёме V данного цилиндра среднее количество столкновений молекулы за 1 секунду равно: á z ñ = n V á v ñ = np d 2á v ñ. (2.2) Если учесть движения остальных молекул, то: á z ñ = np d2 á v ñ, (2.3) тогда средняя длина свободного пробега обратно пропорциональна концентрации молекул: . (2.4) При нормальных условиях á l ñ = 7× 10-8 м. Длину свободного пробега молекул можно определить экспериментально на основе изучения явлений переноса в газах. Законы физической кинетики Диффузия. При диффузии наблюдается перенос как однородных, так и разнородных газов. В результате этого происходит постепенное перемешивание масс газа, перенос массы газа. В химически чистых газах при постоянной температуре диффузия возникает вследствие неодинаковой плотности в различных частях объема газа. Явление диффузии для химически чистого газа подчиняется закону Фика: . (2.5) Плотность потока массы вещества , проходящего через единичную площадку, пропорциональна коэффициенту диффузии (измеряется в м2/с), - градиент плотности, равный скорости изменения плотности на единице длины х. Знак минус показывает, что перенос масс происходит в направлении убывания плотности. Коэффициент диффузии численно равен плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов: . (2.6) Поскольку средняя длина свободного пробега молекул обратно пропорциональна концентрации молекул n (см. уравнение (2.4)), а давление р тем больше, чем выше n, то коэффициент диффузии обратно пропорционален давлению газа. Вязкость. Механизм внутреннего трения между параллельными слоями газа или жидкости, которые движутся относительно друг друга с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями. В результате этого импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее – увеличивается, что приводит к торможению слоя движущегося быстрее, и ускорению слоя, движущегося медленнее. Сила внутреннего трения между слоями газа (жидкости) подчиняется закону Ньютона: , (2.7) h - динамическая вязкость, или коэффициент внутреннего трения, или коэффициент вязкости; dv / dx – градиент скорости, показывающий быстроту изменения скорости в направлении х, которое перпендикулярно направлению движения слоев; S – площадь, на которую действует сила F. Взаимодействие двух слоев согласно второму закону Ньютона, можно рассматривать как процесс, при котором изменение импульса одного слоя по отношению к другому за единицу времени равно по модулю действующей на каждый слой силе. Тогда плотность потока импульса: . (2.8) Знак минус указывает на то, что импульс переносится в направлении убывания скорости. Динамическая вязкость h численно равна плотности потока импульса при градиенте скорости, равном единице, и вычисляется по формуле: . (2.9) Поскольку плотность r прямо пропорциональна давлению р, а длина свободного пробега á l ñ обратно пропорциональна давлению, то коэффициент внутреннего трения не зависит от давления. Он определяется главным образом природой химических веществ и температурой. Закон Ньютона для внутреннего трения используется, например, при выводе так называемой формулы Пуазейля, определяющей объём V вязкой жидкости, которая протекает за время t по трубе радиуса r и длины l из-за разницы давлений на краях трубы, равной Δ p: . (2.10) Теплопроводность. В газах перенос тепла происходит от нагретой части с температурой Т 1к более холодной с температурой Т 2. Передача теплаосуществляетсявследствие постоянных столкновений молекул, имеющих большую кинетическую энергию с молекулами, энергия которых меньше. Постепенно идет процесс выравнивания средних кинетических энергий молекул. Перенос энергии в форме теплоты подчиняется закону Фурье: , (2.11) - плотность теплового потока, l - коэффициент теплопроводности; - градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры. Коэффициент теплопроводности l равен: , (2.12) сV – удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме). Коэффициент теплопроводности l измеряется в Вт/(м× К). Итак, в газах явления диффузии, вязкости и теплопроводности имеют немало общего: 1) все эти явления обусловливаются переносом: явление диффузии – переносом массы, явление теплопроводности – переносом энергии, явление вязкости – переносом импульса; 2) все явления сопровождаются рассеянием энергии; 3) в механизме всех трех явлений большую роль играет средняя длина свободного пробега á l ñ. Сравним формулы, которые описывают явления переноса (табл. 2.1). Из формул вытекают простые зависимости между l, D иh: h = r D (2.13) ; . (2.14) Таблица 2.1
|