Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. Напомним, что математическое программирование – это раздел математики, предметом изучения которого являются задачи отыскания экстремумов функции нескольких





Напомним, что математическое программирование – это раздел математики, предметом изучения которого являются задачи отыскания экстремумов функции нескольких переменных при дополнительных ограничениях, накладываемых на эти переменные.

Задачи планирования оптимального использования ресурсов чаще всего относятся к линейному программированию. Линейное программирование – это раздел математического программирования, который изучает задачи поиска экстремума линейной функции нескольких переменных, допустимые значения которых определяются линейными уравнениями или неравенствами.

.В общем виде математическая модель задачи линейного программирования состоит из:

1) системы ограничений, накладываемых на переменные (линейных уравнений или неравенств);

2) условия неотрицательности (а иногда и целочисленности) переменных;

3) линейной целевой функции с указанием искомого экстремума (минимума или максимума).

Рассмотрим математическую модель задачи линейного программирования на примере задачи об оптимальном распределении ресурсов.

Пусть предприятие имеет m видов ресурсов, количество которых соответственно равно единиц, из которых производится n видов продукции. Предприятие может обеспечить выпуск каждого j -го вида продукции в количестве, чем единиц, но не менее, чем Для производства единицы j -ой продукции необходимо единиц i -го ресурса. При реализации единицы j -ой продукции прибыль составляет единиц. Необходимо составить план выпуска продукции, который обеспечивал бы получение максимальной прибыли при реализации всей выпускаемой продукции.

Если через обозначить количество единиц j -ой продукции, которое необходимо выпустить, то поставленная задача имеет следующую математическую модель.

Найти максимальное значение линейной функции

при ограничениях

   

 

 







Дата добавления: 2014-11-10; просмотров: 529. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия