Гипергеометрическое распределение
Пусть имеется N элементов, из которых М элементов обладают некоторым признаком А. Извлекаются случайным образом без возвращения n элементов. Х — дискретная случайная величина, число элементов обладающих признаком А, среди отобранных n элементов. Вероятность, что Х = m определяется по формуле . Математическое ожидание и дисперсия случайной величины, распределенной по гипергеометрическому закону, определяются формулами: , .
Пример 7.2. В аккредитации участвуют 4 коммерческих вуза. Вероятности пройти аккредитацию и получить сертификат для этих вузов, соответственно равны 0, 5; 0, 4; 0, 3; 0, 2. Составить закон распределения числа коммерческих вузов, не прошедших аккредитацию. Найти числовые характеристики этого распределения. Решение. В качестве случайной величины Х выступает число коммерческих вузов, не прошедших аккредитацию. Возможные значения, которые может принять случайная величина Х: 0, 1, 2, 3, 4. Для составления закона распределения необходимо рассчитать соответствующие вероятности. Обозначим через событие — первый вуз прошел аккредитацию, — второй, — третий, — четвертый. Тогда ; ; ; . Вероятности для вузов не пройти аккредитацию соответственно равны ; ; ; . Тогда имеем: . Запишем закон распределения в виде таблицы
Проверка: 0, 012 + 0, 106 + 0, 32 + 0, 394 + 0, 168 = 1. Вычислим . Вычислим : , . .
Пример 7.3. Вероятность того, что в библиотеке необходимая студенту книга свободна, равна 0, 3. Составить закон распределения числа библиотек, которые последовательно посетит студент, чтобы взять необходимую книгу, если в городе 3 библиотеки. Решение. В качестве случайной величины Х выступает число библиотек, которые посетит студент, чтобы получить необходимую книгу. Возможные значения, которые примет случайная величина Х: 1, 2, 3. Обозначим через событие — книга свободна в первой библиотеке, — во второй, — в третьей. Тогда . Вероятность противоположного события, что книга занята . Для составления закона распределения рассчитаем соответствующие вероятности: , , Запишем закон распределения в виде таблицы.
Проверка: 0, 3 + 0, 21 + 0, 49 = 1.
Пример 7.4. Из поступающих в ремонт 10 часов 7 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в чистке, рассматривает их поочередно и, найдя такие часы, прекращает дальнейший просмотр. Составить закон распределения числа просмотренных часов. Найти математическое ожидание и дисперсию этой случайной величины. Решение. В качестве случайной величины Х выступает число просмотренных часов. Возможные значения, которые примет случайная величина Х: 1, 2, 3, 4. Все значения случайной величины зависимы. Для составления закона распределения вычислим вероятности того, что случайная величина примет каждое из своих возможных значений. Для расчета вероятностей будем использовать формулу классической вероятности и теорему умножения для зависимых событий. Пусть событие — первые, взятые наугад, часы, нуждающиеся в чистке, — вторые, — третьи, — четвертые. Тогда имеем: , , , Запишем закон распределения в виде таблицы
Проверим, что : . Вычислим математическое ожидание случайной величины по формуле . Вычислим дисперсию случайной величины по формуле . Вычислим , . Пример 7.5. Известно, что в определенном городе 20 % горожан добираются на работу личным автотранспортом. Случайно выбраны 4 человека. Составить закон распределения числа людей, добирающихся на работу личным автотранспортом. Найти числовые характеристики этого распределения. Написать функцию распределения и построить ее график. Решение. В качестве случайной величины Х выступает число людей в выборке, которые добираются на работу личным автотранспортом. Возможные значения, которые может принять случайная величина Х: 0, 1, 2, 3, 4. Вероятность того, что каждый из отобранных людей, которые добираются на работу личным автотранспортом, постоянна и равна . Вероятность противоположного события, т.е. того, что каждый из отобранных людей добирается на работу не личным автотранспортом, равна . Все 4 испытания независимы. Случайная величина подчиняется биномиальному закону распределения вероятностей с параметрами ; ; . Для составления закона распределения вычислим вероятности того, что случайная величина примет каждое из своих возможных значений. Расчет искомых вероятностей осуществляется по формуле Бернулли: . , , , , . Запишем закон распределения в виде таблицы
Так как все возможные значения случайной величины образуют полную группу событий, то сумма их вероятностей должна быть равна 1. Проверка: 0, 4096 + 0, 4096 + 0, 1536 + 0, 0256 + 0, 0016 = 1. Найдем числовые характеристики дискретной случайной величины: математическое ожидание, дисперсию и среднее квадратическое отклонение. Математическое ожидание может быть рассчитано по формуле . Так как случайная величина подчиняется биноминальному закону, то для расчета математического ожидания можно воспользоваться формулой . Дисперсия случайной величины может быть рассчитана по формуле : , . В данном случае дисперсию можно рассчитать по формуле
.
Рассчитаем среднее квадратическое отклонение случайной величины по формуле .
Составим функцию распределения случайной величины Х по формуле .
1. . 2. . 3. . 4. . 5. . 6. .
Запишем функцию распределения
График функции распределения вероятностей имеет ступенчатый вид (рис. 7.3). Скачки равны вероятностям, с которыми случайная величина принимает возможные значения. Рис. 7.3
Пример 7.6. Клиенты банка, не связанные друг с другом, не возвращают кредиты в срок с вероятностью 0, 1. Составить закон распределения числа возвращенных в срок кредитов из 5 выданных. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Решение. В качестве случайной величины Х выступает число кредитов, возвращенных клиентами в срок. Возможные значения, которые может принять случайная величина Х: 0, 1, 2, 3, 4, 5. Вероятность того, что каждый клиент возвратит кредит в срок, постоянна и равна . Вероятность того, что кредит не будет возвращен в срок, равна . Все 5 испытаний независимы. Случайная величина подчиняется биномиальному распределению с параметрами ; ; ; . Для составления закона распределения вычислим вероятности того, что случайная величина примет каждое из своих возможных значений. Расчет искомых вероятностей осуществляется по формуле Бернулли , , , , , , . Запишем закон распределения в виде таблицы
Математическое ожидание вычислим по формуле . Дисперсию вычислим по формуле .
Пример 7.7. Из 10 телевизоров на выставке оказались 4 телевизора фирмы «Сони». Наудачу для осмотра выбраны 3 телевизора. Составить закон распределения числа телевизоров фирмы «Сони» среди 3 отобранных. Решение. В качестве случайной величины Х выступает число телевизоров фирмы «Сони». Возможные значения, которые может принять случайная величина Х: 0, 1, 2, 3. Для составления закона распределения вычислим вероятности того, что случайная величина примет каждое из своих возможных значений. Эти вероятности можно рассчитать по формуле классической вероятности : ; . Запишем закон распределения
Убедимся, что . Пример 7.8. На двух автоматических станках производятся одинаковые изделия. Даны законы распределения числа бракованных изделий, производимых в течение смены на каждом из них: Х: для первого
Y: для второго
Составить закон распределения числа производимых в течение смены бракованных изделий обоими станками. Проверить свойство математического ожидания суммы случайных величин. Решение. Для того чтобы составить закон распределения Х + Y необходимо складывать , а соответствующие им вероятности умножить : ; , ; , ; , ; , ; , ; , , , , , , . Закон распределения запишем в виде таблицы
Проверим свойство математического ожидания : , , , .
Пример 7.9. Дискретная случайная величина Х имеет только два возможных значения: и , причем . Вероятность того, что Х примет значение , равна 0, 6. Найти закон распределения величины Х, если математическое ожидание ; . Решение. Сумма вероятностей всех возможных значений случайной величины равна единице, поэтому вероятность того, что Х примет значение . Напишем закон распределения Х
Для того чтобы отыскать и необходимо составить два уравнения. Из условия задачи следует, что , . Составим систему уравнений Решив эту систему, имеем ; и ; . По условию , поэтому задаче удовлетворяет лишь первое решение, т.е. ; . Тогда закон распределения имеет вид
Пример 7.10. Случайные величины и независимы. Найти дисперсию случайной величины , если известно, что , . Решение. Так как имеют место свойства дисперсии и , то получим .
|