Студопедия — Числовые характеристики непрерывных случайных величин
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Числовые характеристики непрерывных случайных величин






 

Математическое ожидание непрерывной случайной величины Х, возможные значения которой принадлежат всей оси Ох, определяется равенством

где р (х) — плотность распределения случайной величины Х. Предполагается, что интеграл сходится абсолютно. В частности, если все возможные значения принадлежат интервалу , то

Дисперсия непрерывной случайной величины Х, возможные значения которой принадлежат всей оси Ох определяется равенством

если интеграл сходится, или равносильным равенством

В частности, если все возможные значения Х принадлежат интервалу , то

или

Все свойства математического ожидания и дисперсии для дискретных случайных величин справедливы и для непрерывных величин.

Среднее квадратическое отклонение непрерывной случайной величины определяется равенством

.

Модой непрерывной случайной величины Х называется ее наиболее вероятное значение (для которого плотность вероятности р (х) достигает максимума).

Медианой непрерывной случайной величины Х называется такое ее значение, для которого

.

Вертикальная прямая , проходящая через точку с абсциссой, равной , геометрически делит площадь фигуры под кривой распределения на две равные части (рис. 8.7).

 
 

 


Рис. 8.7

 

Очевидно, что .

Начальный теоретический момент порядка k непрерывной случайной величины Х определяется равенством

.

Центральный теоретический момент порядка k непрерывной случайной величины Х определяется равенством

.

Если все возможные значения Х принадлежат интервалу , то

, .

Очевидно, что ; ; ; ; . Центральные моменты выражаются через начальные моменты по формулам:

,

,

.

Математическое ожидание М (Х), или первый начальный момент, характеризует среднее значение распределения случайной величины Х; второй центральный момент, или дисперсия , — степень рассеяния распределения Х относительно М (Х).

Третий центральный момент служит для характеристики асимметрии распределения.

Величина называется коэффициентом асимметрии случайной величины.

А = 0, если распределение симметрично относительно математического ожидания.

Четвертый центральный момент характеризует крутость распределения.

Эксцессом случайной величины называется число

.

Кривые более островершинные, чем кривая для нормального распределения, обладают положительным эксцессом, более плосковершинные — отрицательным эксцессом.

 

Пример 8.7. Дана функция

При каком значении параметра с эта функция является плотностью распределения некоторой непрерывной случайной величины Х? Найти математическое ожидание и дисперсию случайной величины Х.

Решение. Для того чтобы р (х) была плотностью вероятности некоторой случайной величины Х, она должна быть неотрицательна, т.е. , откуда и она должна удовлетворять свойству 4 плотности вероятности.

Следовательно,

откуда

.

Найдем интеграл , применив метод интегрирования по частям

Таким образом,

и плотность распределения имеет вид

Следовательно,

Дисперсия

Вначале найдем

Теперь

 

 
 

Пример 8.8. Случайная величина Х распределена по «закону прямоугольного треугольника» в интервале (рис. 8.8).

 

 
 

1. Написать выражение плотности распределения.

2. Найти функцию распределения F (х).

3. Найти вероятность попадания случайной величины Х на участок от до а.

4. Найти характеристики величины Х: М (Х), D (Х), , .

Решение. Так как площадь прямоугольного треугольника есть площадь фигуры, ограниченной кривой распределения и осью абсцисс, то она равна единице: и, следовательно, . Уравнение прямой АВ в отрезках имеет вид , откуда , то есть функция плотности распределения имеет вид

Найдем функцию распределения F (х):

если , то

если , то

если , то

Таким образом,

Вероятность попадания случайной величины Х на участок от до а определяется по формуле

.

Найдем математическое ожидание:

Следовательно,

,

.

Так как , а , ,

,

то .

 

Пример 8.9. По данным задачи 8.5 найти математическое ожидание М (Х), дисперсию D (Х), моду М0 (Х) и медиану Ме (Х).

Решение. Так как

то .

Дисперсия

Вначале найдем

.

Следовательно,

График плотности вероятности р (х)имеет вид (рис. 8.9)

 
 

Рис. 8.9

Плотность вероятности р (х)максимальна при х = 2, это означает, что М0 (Х) = 2.

Из условия найдем медиану Ме (Х): ; откуда

 

Пример 8.10. Дана функция

Найти коэффициент асимметрии и эксцесс случайной величины Х.

Решение. Плотность распределения случайной величины Х равна

Так как асимметрия , эксцесс , то найдем начальные моменты первого, второго, третьего и четвертого порядков:

Тогда

 

Так как то Следовательно,

 

Пример 8.11. Плотность случайной величины Х задана следующим образом:

Найти моду, медиану и математическое ожидание Х.

Решение. Найдем математическое ожидание Х:

.

Так как плотность распределения достигает максимума при х = 1, то М 0(Х) =1. Медиану Ме (Х) найдем из условия . Для этого вначале найдем функцию распределения :

если , то

если , то

если , то

Таким образом,

Уравнение равносильно уравнению , откуда .

 

Пример 8.12. Случайная величина Х задана плотностью распределения

Найти математическое ожидание функции (не находя предварительно плотности распределения ).

Решение. Воспользовавшись формулой для вычисления математического ожидания функции от случайного аргумента Х

где а и b — концы интервала, в котором заключены возможные значения Х, получим

 

Пример 8.13. Случайная величина Х задана плотностью распределения

Найти моду, математическое ожидание и медиану величины Х.

Решение. Так как , то отсюда видно, что при х = 4 плотность распределения достигает максимума и, следовательно, М 0(Х) = 4 (можно было найти максимум методами дифференциального исчисления).

Кривая распределения симметрична относительно прямой х = 4, поэтому М (Х)= Ме (Х) = 4.

 

 







Дата добавления: 2014-11-10; просмотров: 868. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия