Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Все значения этой функции принадлежат отрезку , т.е





 

Рис. 8.4

 

Все значения этой функции принадлежат отрезку , т.е. . Функция F (х) является неубывающей: в промежутке она постоянна, равна нулю, в промежутке возрастает, в промежутке также постоянна, равна единице (см. рис. 8.4). Функция непрерывна в каждой точке х 0 области ее определения — промежутка , поэтому непрерывна слева, т.е. выполняется равенство

, .

Выполняются и равенства:

, .

Следовательно, функция удовлетворяет всем свойствам, характерным для функции распределения. Значит данная функция является функцией распределения некоторой случайной величины Х.

 

 

Пример 8.3. Является ли функцией распределения некоторой случайной величины функция

Решение. Данная функция не является функцией распределения случайной величины, так как на промежутке она убывает и не является непрерывной. График функции изображен на рис. 8.5.

 
 

 

Рис. 8.5

 

Пример 8.4. Случайная величина Х задана функцией распределения

Найти коэффициент а и плотность вероятности случайной величины Х. Определить вероятность неравенства .

Решение. Плотность распределения равна первой производной от функции распределения

Коэффициент а определяем с помощью равенства

,

отсюда

.

Тот же результат можно было получить, используя непрерывность функции в точке

, .

Следовательно, .

Поэтому плотность вероятности имеет вид

Вероятность попадания случайной величины Х в заданный промежуток вычисляется по формуле

.

Пример 8.5. Случайная величина Х имеет плотность вероятности (закон Коши)

.

Найти коэффициент а и вероятность того, что случайная величина Х примет какое-нибудь значение из интервала . Найти функцию распре­деления этой случайной величины.

Решение. Найдем коэффициент а из равенства

,

но

Следовательно, .

Итак, .

Вероятность того, что случайная величина Х примет какое-нибудь значение из интервала , равна

Найдем функцию распределения данной случайной величины

 
 

Пример 8.6. График плотности вероятности случайной величины Х изображен на рис. 8.6 (закон Симпсона). Написать выражение плотности вероятности ифункцию распределения этой случайной величины.

Рис. 8.6

Решение. Пользуясь графиком, записываем аналитическое выражение плотности распределения вероятностей данной случайной величины

Найдем функцию распределения.

Если , то .

Если , то .

Если , то

Если , то

Следовательно, функция распределения имеет вид

 







Дата добавления: 2014-11-10; просмотров: 773. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия