Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачи для самостоятельного решения. 8.15. Случайная величина Х имеет плотность





 

8.15. Случайная величина Х имеет плотность

Найти математическое ожидание и дисперсию Х.

Ответ: М (Х) = 0, 5909; D (Х) = 0, 0781.

 

8.16. Случайная величина Х имеет плотность

Найти математическое ожидание и дисперсию Х.

Ответ: .

 

8.17. Случайная величина Х задана плотностью распределения

Найти математическое ожидание функции (не находя предварительно плотности распределения ).

Ответ: .

 

8.18. Плотность случайной величины Х имеет вид

Найти коэффициент а. Вычислить моду, медиану, математическое ожидание, дисперсию, начальные и центральные моменты первого, второго и третьего порядков случайной величины Х.

Ответ: ,

 

8.19. Случайная величина Х задана плотностью распределения

Найти начальные моменты случайной величины Х.

Ответ: не существуют при k ³ 6.

 

8.20. Плотность вероятности случайной величины Х имеет вид

Найти математическое ожидание и дисперсию случайной величины

Ответ:

 

8.21. Случайная величина Х имеет функцию распределения

Найти математическое ожидание случайной величины .

Ответ:

8.22. По данным задачи 8.9 (при ) найти моду и медиану распределения; вероятность того, что случайная величина Х окажется в промежутке математическое ожидание и дисперсию Х.

Ответ: .

8.23. Найти математическое ожидание и дисперсию случайной величины, плотность вероятности которой имеет вид

(распределение Лапласа).

Ответ:

 

8.24. Случайная величина Х подчинена закону Симпсона («закону равнобедренного треугольника») на участке от – а до + а (рис. 8.10). Написать выражение плотности распределения; построить график функции распределения; найти числовые характеристики случайной величины Х: , , , . Найти вероятность попадания случайной величины Х в интервал .

 
 

Рис. 8.10

 

Ответ:

.

 

8.25. Случайная величина Х подчинена закону распределения с плотностью, которая задана формулой

Найти коэффициент асимметрии распределения.

 

Ответ:

8.26. Найти коэффициент асимметрии и эксцесс случайной величины, распределнной по закону Лапласа с плотностью

 

Ответ: ;

 

8.27. Случайная величина Х, сосредоточенная на интервале , задана функцией распределения . Найти моду и медиану случайной величины Х.

 

Ответ: ;

8.28. Найти значения для случайной величины Х, функция распределения которой

 

Ответ:

 

8.29. Кривая распределения случайной величины Х представляет собой полуэллипс с полуосями а и b. Полуось а известна. Определить b. Найти и функцию распределения .

Ответ:







Дата добавления: 2014-11-10; просмотров: 1098. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия