Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примерный фрагмент выполнения лабораторной работы на Maple





Решить дифференциальное уравнение y’=f(x, y) методом Эйлера на отрезке [a, b] с шагом h c начальным условием y(a)=y0 , f(x, y)=(x-y)/(x+y), a=0, b=1, h=0.1, y0=1.

 

> x: =array(0..10): y: =array(0..10):

> x[0]: =0: y[0]: =1: h: =0.1:

> for i from 0 to 9 do x[i+1]: =x[0]+h*i; y[i+1]: =y[i]+h*(x[i]-y[i])/(x[i]+y[i]); end do;

Команда решения дифференциального уравнения будет иметь вид dsolve(eq, vars, type=numeric, options), где eq – уравнения, vars – список неизвестных функций, options – параметры, позволяющие указать метод численного интегрирования дифференциального уравнения. В Maple реализованы такие методы: method=rkf45 - метод Рунге-Кутта-Фельберга 4-5-ого порядка (установлен по умолчанию); method=dverk78 – метод Рунге-Кутта 7-8 порядка; mtthod=classical – классический метод Рунге-Кутта 3-его порядка; method=gear и method=mgear – одношаговый и многошаговый методы Гира.

График численного решения дифференциального уравнения можно построить с помощью команды odeplot(dd, [x, y(x)], x=x1..x2), где в качестве функции используется команда dd: =dsolve({eq, cond}, y(x), numeric) численного решения, после нее в квадратных скобках указывают переменную и неизвестную функцию [x, y(x)], и интервал x=x1..x2 для построения графика.

> restart;

> eq: =diff(y(x), x)=(x-y(x))/(x+y(x));

> de: =dsolve({eq, y(0)=1}, y(x), numeric);

> de(0.9);

> with(plots):

Warning, the name changecoords has been redefined

> odeplot(de, [x, y(x)], 0..1, thickness=2);

>

Таблица 5.1

N Функция
        0.1
        0.1
        0.1
        0.1
        0.1
        0.1
        0.1
        0.1
        0.1
        0.1
  1.5 2.5 2.2 0.1
        0.1
  0.1 1.1 1.25 0.1
        0.1
      1.7 0.1

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Проверить для дифференциального уравнения условия теоремы существования и единственности.

2. На какие основные группы подразделяются приближенные методы решения дифференциальных уравнений?

3. В какой форме можно получить решение дифференциального уравнения по методу Эйлера?

4. Каков геометрический смысл решения дифференциального уравнения методом Эйлера?

5. В какой форме можно получить решение дифференциального уравнения по методу Рунге-Кутта?

6. Какой способ оценки точности используется при приближенном интегрировании дифференциальных уравнений методами Эйлера и Рунге-Кутта?

7. Как вычислить погрешность по заданной формуле, используя метод двойного пересчета?

 







Дата добавления: 2014-11-10; просмотров: 2213. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия