Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. Пример 1. В вершинах квадрата расположены равные положительные заряды (рис.1)





Пример 1. В вершинах квадрата расположены равные положительные заряды (рис.1). В центр квадрата помещен отрицательный заряд. Вычислить, какой величины должен быть этот заряд, чтобы уравновесить силу взаимного отталкивания зарядов, расположенных по вершинам квадрата.

Дано: Кл.

Найти:

Рис. 1

Решение: Для определения величины q 5 используем закон Кулона. Заряды q1, q2, q3, q4 одинаковы и расположены симметрично. Определим условия, при которых один из зарядов, например , находился бы в равновесии с зарядом . Устанавливаем силы отталкивания, которые испытывает заряд q1 от положительных зарядов q2, q3, q4. По принципу суперпозиции поле каждого заряда q2, q3, q4 действует на заряд независимо. Это позволяет составить векторную сумму этих сил , , . Чтобы выполнить условие равновесия зарядов и , надо, чтобы векторная сумма действующих сил была равна нулю. С учетом сказанного:

, (1)

где - силы, действующие со стороны зарядов q2, q3, q4. и на заряд . Учитывая расположение зарядов (см. рис.1) заменим в (1) на и получим:

. (2)

Переходим от векторного к скалярному выражению, здесь

. (3)

Определяем величину заряда, применяя закон Кулона:

.

Так как , то

. (4)

Кроме того, по условию , тогда

. (5)

Подставляя в (4) и из (5), после преобразования получим:

.

Производим вычисления в единицах СИ:

.

Пример 2. Два одинаковых положительных заряда 10-7 Кл находятся в воздухе на расстоянии 8 см друг от друга. Определить напряженность в точке О, находящейся на середине отрезка, соединяющего заряды, и в точке А, расположенной на расстоянии 5 см от зарядов.

Дано: , , 2 r= 8 см = 0, 08 м, r1 = 0, 05 м. Найти Е0 и Е.

Решение: Напряженность поля, создаваемого зарядами, находится по принципу суперпозиции. Результирующая напряженность Е определяется векторной суммой напряженностей, создаваемых каждым зарядом в данной точке поля:

, (1)

где и - величины напряженностей полей, определяемых по формуле

. (2)

Чтобы найти числовые значения напряженности в точке О, надо сначала построить векторы напряженностей и . Т.к. заряды положительные, их векторы направлены от точки О в сторону от зарядов, создающих это поле (рис.2)

Рис. 2

Кроме того, заряды равны и расположены на равном расстоянии от точки О. Поэтому с учетом направления векторов из формулы (1) следует:

, , отсюда получаем .

В точке А напряженность вычисляется по формуле (1) при аналогичном построении векторов. Результирующий вектор напряженности является диагональю параллелограмма (см. рис.2), следовательно, или , т.к. .Численное значение напряженности поля в точке А определяется по формуле

,

, h = OA = 0, 03 м.

Проверяем единицу измерения: .

Пример 3. Установить, как изменится емкость и энергия плоского воздушного конденсатора, если параллельно его обкладкам ввести металлическую пластину толщиной 1 мм. Площадь обкладки конденсатора и пластины 150 см2, расстояние между обкладками 6 мм. Конденсатор заряжен до 400 В и отключен от батареи.

Дано: = 1, = 1 мм = 10-3 м, S = 150 см2 = , d = 6 мм = , U = 400 В.

Найти: .

Решение: Емкость и энергия конденсатора при внесении в него металлической пластины будут изменяться. Это вызвано тем, что уменьшается расстояние между пластинами от d до d-d0 (рис.3). Используем формулу электроемкости плоского конденсатора.

, (1)

где S - площадь пластины, d - расстояние между пластинами.

Рис.3.

В нашем случае

. (2)

Проводим вычисления в системе СИ:

.

Проверим единицу измерения СИ:

.

Так как электрическое поле в плоском конденсаторе однородно, плотность энергии во всех его точках одинакова и равна , где Е - напряженность поля между обкладками. При внесении металлической пластины параллельно обкладкам напряженность поля остается неизменной, а объем электрического поля уменьшился на

.

Следовательно, изменение энергии (конечное значение меньше начального) произошло вследствие уменьшения объема поля конденсатора:

. (3)

Напряженность поля Е определяется через градиент потенциала

, (4)

где U - разность потенциалов, d - расстояние между обкладками. Расчетная формула (3) с учетом формулы (4) примет вид:

. (5)

Подставляя числовые значения (в единицах СИ) в формулу (5), получаем:

.

Проверяем единицу измерения:

.

Пример 4. Плоский воздушный конденсатор из двух пластин, расположенных на расстоянии 4 мм друг от друга, общей площадью 100 см2. Конденсатор заряжают от батареи в 200 В и отключают от нее. Какую работу нужно совершить, чтобы увеличить расстояние между обкладками в два раза? Решить задачу при условии, когда конденсатор не отключают от батареи.

Дано: = 1, = 4 мм = , S1= S2 = 50 см2 = , = 8 мм = , U0 = 200 В.

Найти: А.

Решение: Чтобы увеличить расстояние между обкладками конденсатора, отключенного от батареи, необходимо совершить работу под действием внешних сил. Работа внешних сил зависит от приложенной силы F и перемещения от до , где

. (1)

Приложенная сила определяется силой взаимодействия между пластинами

, (2)

где q - заряд пластины, E1 - напряженность поля одной пластины. Величина напряженности может быть получена через градиент потенциала

. (3)

Заряд пластины, перемещаемый относительно другой пластины, может быть найден по площади пластины S, расстоянию между обеими пластинами l и разности потенциалов U. Из формулы емкости плоского конденсатора , получаем

. (4)

Проведя подстановку формул (2-4) в уравнение (1), получаем

. (5)

Для определения полной работы необходимо учесть, что при отключенном конденсаторе напряжение изменяется, но заряд q и напряженность поля Е остаются неизменными:

. (6)

Подставим выражение (6) в уравнение (5) и проинтегрируем:

. (7)

Подставляя в (7) числовые значения (в единицах СИ, находим)

.

Пример 5. Найти токи, протекающие в каждой ветви электрической цепи (рис. 4), если = 130 В, = 117 В, R = 0, 5 Ом, R = 0, 3 Ом, R = 12 Ом. Внутреннее сопротивление источников ЭДС не учитывать.

Дано: = 130 В, = 117 В, R = 0, 5 Ом, R = 0, 3 Ом, R = 12 Ом.

Найти

Рис.4.

Решение: Задача дана для расчета разветвленных цепей, когда в них есть несколько источников тока. При решении задач такого типа рационально пользоваться законами (правилами) Кирхгофа. Первый закон сформулирован для узлов, т.е. точек разветвления цепи, в которых сходится больше двух проводников: алгебраическая сумма токов, сходящихся в узле равна нулю .

Второй закон для замкнутых контуров гласит: в любом замкнутом контуре алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС в контуре .

Решая совместно составленные по этим правилам уравнения, можно определить ту или иную искомую величину (сопротивления внешней цепи или силы токов, ЭДС). Для составления уравнений по указанным законам надо придерживаться следующих правил:

1. Обозначить на схеме буквами узлы и контуры.

2. Произвольно выбрать направление токов (если они не оговорены условием задачи) во всех участках цепи и обозначить их на чертеже стрелками.

3. Учесть направление токов при составлении уравнения по первому закону. Положительными считать токи, подходящие к узлу, отрицательными - отходящие от узла.

4. Составить систему уравнений для первого закона Кирхгофа. Число уравнений, составленных по этому правилу, должно быть на единицу меньше числа узлов в цепи.

5. Выбрать произвольно направление обхода контура. Условиться, что ЭДС в уравнении будет положительна, если направление от положительного полюса к отрицательному вне источника тока совпадает с направлением обхода, в противном случае ЭДС отрицательна.

6. Считать падение напряжения в цепи положительным, если выбранное ранее направление тока на этом участке (между двумя узлами) совпадает с направлением обхода контура, и отрицательным, если направление тока не совпадает с направлением обхода контура.

7. Первый контур выбирается произвольно. При составлении уравнений для следующих контуров надо включать в них контуры, ранее не входившие.

8. Число уравнений, составленных по второму закону Кирхгофа, определяется следующим условием. Если число контуров в цепи m, а узлов в ней n, то число независимых уравнений, достаточных для решения, равно m - n+1.

9. Получение в ответе токов с отрицательными знаками означает только то, что было выбрано направление, обратное действительному.

Согласно сформулированным выше правилам, решаем задачу 5:

1) Обозначим на схеме контуры, узлы, направления токов.

2) Устанавливаем m - число ветвей (в данной схеме их 3) и n - число узлов (в данной схеме их 2 - в точках В и Н, (см. рис.4).

3) Для составления уравнения по первому закону Кирхгофа следует выбрать один из указанных узлов. Выбираем узел В, в котором сходятся токи трех проводников. Учитывая направление токов, получим

. (1)

4) Устанавливаем число уравнений, необходимых для решения задач по второму закону Кирхгофа. Это число уравнений равно m - n+1 = 3 – 2 + 1 = 2. Выбираем контуры ВСДНВ и АВНТА. Устанавливаем обход по контуру ВСДНВ. Учитывая правило знаков, выбираем обход по часовой стрелке, при котором ЭДС будет положительной. С учетом выбранного ранее направления токов составляем первое уравнение по второму закону Кирхгофа

. (2)

Составляем уравнение для второго контура. Для этого устанавливаем направление обхода для контура А В Н Т А. Так как в этом контуре два источника тока и больше , обход начинаем от к по часовой стрелке. Кроме этого, знаки при ЭДС и падении напряжения (IR) устанавливаем в соответствии с ранее записанными правилами

. (3)

Из уравнения (1) находим

. (4)

Для определения числовых результатов подставляем в формулу (2) и (3) известные числовые значения сопротивления и ЭДС.

, (5)

. (6)

После сложения (5) и (6) получим

. (7)

Подставляя полученную силу тока в (4), находим

.

Следовательно

. (8 )

Силу тока (8) используем в выражении (5):

,

. (9)

Зная I3 из формулы (7), находим

. (10)

Определяем значение I2 из выражения (4)

.

Задача 6. Найти сопротивление железного стержня диаметром 1 мм, если масса этого стержня 1 кг.

Решение. Сопротивление стержня можно рассчитать по формуле ,

где R - сопротивление, - удельное сопротивление. l - длина стержня, S – площадь поперечного сечения стержня.

Площадь сечения круглого стержня определяется , где d - диаметр стержня. Длина стержня выразится из его массы: , где m - масса стержня, - удельная плотность материала стержня, V - объем стержня, . Подставив найденные значения S и l в формулу для R. получим:

Из справочных таблиц находим

,

тогда

.

 







Дата добавления: 2014-11-10; просмотров: 5286. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия