Раздельное определение компонентов в бинарных фосфатных смесях
Цель работы – определить массу (г) двух компонентов в выданной для анализа пробе, используя метод кислотно-основного потенциометрического титрования (рН-метрического титрования): § Проба А – смесь H3РO4 и NaH2РO4; § Проба Б – смесь H3РO4 и H2SO4. Сущность работы. Потенциометрическая индикация конечной точки титрования (к. т. т.) позволяет дифференцированно титровать смеси кислот с погрешностью до 0, 1%, если K a, 1: K a, 2 ³ 104, при этом константа диссоциации слабой кислоты должна быть не ниже 10–8 (p Kа < 8). Кислотно-основное титрование выполняют с использованием рН-метра или иономера, а также в автоматическом режиме на автотитраторах. В качестве индикаторного электрода применяют стеклянный электрод, а в качестве электрода сравнения – хлоридсеребряный. В современных моделях иономеров эти электроды объединены в один комбинированный электрод (датчик). Проба А. Смесь H3РO4 и NaH2РO4 При титровании смеси H3РO4 и NaH2РO4 щелочью на кривой титрования наблюдается 2 скачка. Первый из них отвечает оттитровыванию H3PO4 по первой ступени: H3PO4 + NaOH = NaH2PO4* + H2O. (2.1) Второй скачок соответствует оттитровыванию H3PO4 по второй ступени и соли NaH2РO4, которая содержалась в анализируемой пробе: NaH2PO4* + NaOH = Na2НPO4 + H2O; (2.2) NaH2PO4 + NaOH = Na2НPO4 + H2O. (2.3) Проба Б. Смесь H3РO4 и H2SO4 При титровании смеси кислот H2SO4 и H3PO4 щелочью на кривой титрования наблюдается 2 скачка. Первый из них отвечает оттитровыванию всей H2SO4, а также H3PO4 по первой ступени: H2SO4 + 2NaOH = Na2SO4 + 2H2O; (2.4) H3PO4 + NaOH = NaH2PO4 + H2O. (2.5) Второй скачок соответствует оттитровыванию H3PO4 по второй ступени: NaH2PO4 + NaOH = Na2НPO4 + H2O. (2.6) Оборудование, посуда, реактивы: рН-метр или иономер (можно с блоком автоматического титрования БАТ); индикаторный электрод – стеклянный; электрод сравнения – хлоридсеребряный (или один комбинированный электрод); магнитная мешалка со стержнем; 0, 1000 M стандартный раствор NaOH или KОН; бюретка; стакан для титрования вместимостью 150 мл. Выполнение работы. Получают анализируемый раствор в стакан для титрования и разбавляют водой до погружения электродов. Включают магнитную мешалку. Затем проводят титрование, добавляя щелочь по 0, 2–0, 5 мл и фиксируя значение рН после добавления каждой порции титранта. Титрование прекращают после второго скачка, когда значение рН раствора практически не меняется. Строят интегральные (рН – V, мл) и дифференциальные (Δ рН / Δ V – V, мл) кривые титрования. По ним определяют объемы титранта, необходимые для достижения первой и второй к. т. т. Используя полученные значения, находят массу (г) каждого компонента в выданной для анализа пробе. При титровании с использованием БАТа предварительно рассчитывают значения рН раствора в первой и второй точках эквивалентности с целью задания их для автоматического титрования. Поскольку в первой точке эквивалентности в растворе в обоих случаях присутствует амфолит NaH2PO4, то расчет рН ведут по формуле (2.7) Во второй точке эквивалентности в растворе в обоих случаях присутствует амфолит Na2HPO4, следовательно (2.8) После завершения автоматического титрования проводят расчет массы каждого компонента по закону эквивалентов, используя значения объемов титранта V 1 и V 2. При этом необходимо предварительно определить объемы титранта, которые израсходованы на каждую из протекающих реакций по отдельности: § Проба А – на титрование H3PO4 по первой ступени (реакция 2.1) затрачен объем щелочи V 1, следовательно, на титрование H3PO4 по второй ступени (реакция 2.2) затрачен точно такой же объем щелочи V 1. Тогда на титрование соли NaH2РO4, которая содержалась в анализируемой пробе (реакция 2.3), затрачено (V 2 – 2 V 1) мл щелочи. § Проба Б – на титрование H3PO4 по второй ступени (реакция 2.6) затрачен объем щелочи D V = V 2 – V 1, следовательно, на титрование H3PO4 по первой ступени (реакция 2.5) затрачен точно такой же объем щелочи D V. Тогда на титрование H2SO4 (реакция 2.4) затрачено
|