Лекция 2. Определение предела последовательности
Определение предела последовательности
Обозначим через N множество натуральных чисел. Итак, N= . Определение 2. Последовательностью действительных чисел называется закон, согласно которому каждому N ставится в соответствие действительное число , называемое элементом последовательности. Элемент называется общим членом последовательности.
Последовательность чаще всего задается своим общим членом . Более подробно последовательность выписывают так: . Пример 2. 1) Расположим элементы последовательности с общим членом на действительной прямой: Мы видим, что элементы этой последовательности с ростом n приближаются к точке 0 на сколь угодно малое расстояние. Говорят также, что последовательность " сгущается" около точки 0, или " стремится" к точке 0. Мы увидим, что в соответствие с точным определением, которое будет дано чуть позже, число 0 является пределом последовательности . 2) Рассмотрим теперь следующую последовательность: . Имеем: . Нанесем эти элементы на числовую прямую: Нечетные элементы этой последовательности сгущаются вокруг точки –1, а четные – вокруг точки 1. То есть не существует одной такой точки, вокруг которой сгущались бы все члены данной последовательности с ростом n. О такого сорта последовательностях говорят, что они не имеют предела (расходятся). 3) Члены последовательности с ростом n уходят все дальше и дальше вправо на числовой прямой: О такой последовательности мы будем говорить, что ее предел равен , или что она расходится к . Аналогично, о последовательности , члены которой с ростом n уходят все дальше и дальше влево на числовой прямой, говорят, что ее предел равен , или что она расходится к . 4) Члены последовательности , перескакивая с одной стороны оси Ox на другую, с ростом n также удаляются на все большее и большее расстояние от начала координат: Так как элементы не сохраняют определенный знак, то в этом случае будем говорить, что предел данной последовательности равен (то есть перед символом не будем ставить никакой знак).
Перед тем, как перейти к строгим определениям, напомним обозначения двух логических символов, с помощью которых сокращают некоторые записи. А именно, вместо фраз " для любого", " для всякого", " для каждого" часто записывают символ ; вместо слов " существует", " существуют" записывают символ . Кроме того, греческими буквами и мы будем всегда обозначать положительные переменные, могущие принимать сколь угодно малые значения. Определение 3. - окрестностью точки называется множество точек , удовлетворяющих неравенству (которое, как известно, равносильно двойному неравенству ).
Геометрически - окрестность точки представляет собой открытый интервал числовой прямой: Определение 4. 1) Число называется пределом последовательности , если (N – натуральное число), такое, что число попадает в - окрестность точки a, то есть выполняется неравенство:
Тот факт, что a есть предел обозначается следующим образом: . 2) В случае, если не существует числа , удовлетворяющего пункту 1) данного определения, говорят что последовательность расходится (не имеет конечного предела). 3) Если (M – сколь угодно большое число) , такое, что (соответственно, ), то говорят, что последовательность расходится к (соответственно, расходится к ), и этот факт обозначают следующим образом: (соответственно, ). 4) Если (M – сколь угодно большое число) , такое, что , то говорят, что последовательность расходится к , и этот факт обозначают следующим образом: .
Читателю предлагается доказать, что последовательности, взятые из пунктов 1)–4) примера 2, соответственно удовлетворяют пунктам 1)–4) определения 4, то есть, что , не существует, .
Свойства предела последовательности
1. Предел константы равен самой этой константе, то есть если N , то
2. Предел суммы двух последовательностей равен сумме пределов этих последовательностей, то есть если и существуют, то
3. Постоянный множитель можно вынести за знак предела, то есть если и существует, то
4. Предел произведения двух последовательностей равен произведению пределов этих последовательностей, то есть если и существуют, то
5. Предел частного двух последовательностей равен частному пределов этих последовательностей, то есть если и существуют и , то
6. Если члены одной последовательности не превышают соответствующих членов другой последовательности, то и предел первой последовательности не превышает предела второй последовательности, то есть если N и пределы и существуют, то
Заметим, что если выполняется строгое неравенство , то после перехода к пределу может получится равенство. Например, если , а , то , однако . Таким образом, в общем случае следствием неравенства является нестрогое неравенство . 7. Если = = a и N , то предел последовательности существует и
8. Если последовательность ограничена (то есть , такое, что N , а , то
Доказательства свойств 1–6 мы опускаем. Их можно найти в любом учебнике по математическому анализу. Докажем лишь свойства 7 и 8. Доказательство свойства 7. Пользуясь определением 4, распишем тот факт, что : . Точно то же сделаем для : . Положим . Тогда при два полученные двойные неравенства выполняются одновременно и, следовательно, имеем: . Доказательство свойства 8. Прежде всего отметим, что равенство равносильно равенству . Имеем: . Так как , то по свойству 7 .
Монотонные последовательности
Определение 5. Последовательность называется монотонно возрастающей (соответственно, монотонно убывающей), если N (соответственно, ). Если N выполняются соответствующие строгие неравенства, то говорят о строгом возрастании и строгом убывании последовательности.
Например, в примере 2 последовательность 1) строго монотонно убывает, последовательность из пункта 3) строго монотонно возрастает, а последовательность 2) не является монотонной. Для монотонных последовательностей справедлива следующая теорема, доказательство которой выходит за рамки нашей программы. Теорема 1. 1) Если последовательность монотонно возрастает и ограничена сверху (то есть , такое, что N , то данная последовательность имеет предел, причем . 2) Если последовательность монотонно убывает и ограничена снизу (то есть , такое, что N , то данная последовательность имеет предел, причем . Пример 3. Рассмотрим последовательность . Используя формулу бинома Ньютона и формулу суммы геометрической прогрессии, можно доказать (доказательство не слишком простое), что эта последовательность монотонно возрастает и ограничена сверху числом M =3. По теореме 1 данная последовательность имеет предел, который, следуя Л.Эйлеру, обозначают буквой e. Приближенное значение числа e таково: . Определение 6. Число
называется числом Эйлера. При изучении понятия предела функции нам понадобится следующее Определение 7. Говорят, что последовательность строго стремится к числу , если и N выполняется неравенство . Например, последовательность из пункта 1) примера 2 стремится к нулю строго. Предел же последовательности , как это следует из свойства 8 пределов последовательностей, равен нулю. Однако не стремится к нулю строго, так как при нечетных n .
|