Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Исследование нелинейной непрерывной системы автоматического управления





 

Исходные данные

Структура нелинейной САУ представлена на рисунке 4, где НЭ- нелинейный элемент, - передаточная функция непрерывной линейной части системы.

 

 

 

Рисунок 4

 

 

Передаточная функция берется из пункта 3.1 как передаточная функция скорректированной системы с соответствующими числовыми коэффициентами. Нелинейный элемент НЭ имеет нелинейную характеристику , которая для всех вариантов заданий является характеристикой идеального реле

 

где величина для вариантов заданий с 1 по 10 равна 1, с 11 по 20 равна 2, с 21 по 30 равна 3.

Задание

Используя метод гармонической линеаризации нелинейного элемента, определить на основе частотного способа возможность возникновения автоколебаний в замкнутой системе, их устойчивость, амплитуду и частоту.

Краткие методические указания

1. Методика определения автоколебаний частотным методом с использованием гармонической линеаризации изложена в [6, c. 596]. Приближенная передаточная функция нелинейного элемента для нашего случая (идеальное реле) имеет вид , где - амплитуда искомого периодического режима, .

2. На комплексной плоскости строится характеристика [ ] = . Это прямая, совпадающая с отрицательным отрезком действительной оси, вдоль которой идет оцифровка по амплитуде . В том же масштабе на комплексной плоскости строится АФЧХ разомкнутой системы при изменении частоты от 0 до .

В точке пересечения АФЧХ и прямой [ ] по графику находятся частота искомого периодического (гармонического) режима , а на прямой [ ] в точке пересечения его амплитуда . Итак, в системе существуют периодические колебания . Для определения устойчивости периодического режима можно воспользоваться следующим правилом: если при увеличении амплитуды вдоль кривой [ ] пересечение АФЧХ происходит «изнутри наружу», то такой периодический режим будет устойчивым, т.е. в системе существуют автоколебания с частотой и амплитудой .

 








Дата добавления: 2014-11-10; просмотров: 570. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия