Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Внецентренное сжатие (растяжение)





Весьма часто продольная нагрузка бывает приложена не в центре тяжести поперечного сечения стержня, а с некоторым смещением (эксцентриситетом) относительно главных осей сечения (рис. 7.4 а).

а)   б)

 


Рис. 7.4

Применив метод сечений, обнаружим в любом поперечном сечении стержня продольную силу N = F и изгибающие моменты, равные относительно оси и относительно оси

Поэтому напряжение в любой точке поперечного сечения с координатами х и у определяется, как при осевом растяжении и изгибе в двух плоскостях, т. е. по формуле, аналогичной формуле (7.18):

(7.12)

 

Для сечений, имеющих выступающие угловые точки, экстремальные напряжения определяют по формуле

 

(7.22)

 

где Wx и Wy - моменты сопротивления относительно осей X, Y.

В сечении, показанном на рис. 7.4 б, наибольшие напряжения будут в точке Е, так как здесь суммируются растягивающие напряжения от центрального растяжения и растягивающие напряжения от изгиба в двух плоскостях:

(7.23)

 

Наименьшие (в алгебраическом смысле) напряжения будут в точке D:

(7.24)

 

При этом они могут получиться как растягивающими, так и сжимающими.

Условие прочности по растягивающим напряжениям имеет вид

 

(7.25)

 

Если точка приложения силы находится на одной из главных осей сечения, например, на оси у, то предыдущая формула упрощается:

 

(7.26)


При произвольной форме поперечного сечения для определения положения опасных точек необходимо найти положение нулевой линии. Уравнение нулевой линии получим, приравняв напряжение нулю:

(7.27)

где x 0 и y0 - текущие координаты точек нулевой линии.

 







Дата добавления: 2014-11-10; просмотров: 1074. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия