Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Внецентренное сжатие (растяжение)





Весьма часто продольная нагрузка бывает приложена не в центре тяжести поперечного сечения стержня, а с некоторым смещением (эксцентриситетом) относительно главных осей сечения (рис. 7.4 а).

а)   б)

 


Рис. 7.4

Применив метод сечений, обнаружим в любом поперечном сечении стержня продольную силу N = F и изгибающие моменты, равные относительно оси и относительно оси

Поэтому напряжение в любой точке поперечного сечения с координатами х и у определяется, как при осевом растяжении и изгибе в двух плоскостях, т. е. по формуле, аналогичной формуле (7.18):

(7.12)

 

Для сечений, имеющих выступающие угловые точки, экстремальные напряжения определяют по формуле

 

(7.22)

 

где Wx и Wy - моменты сопротивления относительно осей X, Y.

В сечении, показанном на рис. 7.4 б, наибольшие напряжения будут в точке Е, так как здесь суммируются растягивающие напряжения от центрального растяжения и растягивающие напряжения от изгиба в двух плоскостях:

(7.23)

 

Наименьшие (в алгебраическом смысле) напряжения будут в точке D:

(7.24)

 

При этом они могут получиться как растягивающими, так и сжимающими.

Условие прочности по растягивающим напряжениям имеет вид

 

(7.25)

 

Если точка приложения силы находится на одной из главных осей сечения, например, на оси у, то предыдущая формула упрощается:

 

(7.26)


При произвольной форме поперечного сечения для определения положения опасных точек необходимо найти положение нулевой линии. Уравнение нулевой линии получим, приравняв напряжение нулю:

(7.27)

где x 0 и y0 - текущие координаты точек нулевой линии.

 







Дата добавления: 2014-11-10; просмотров: 1074. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия