Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Внецентренное сжатие (растяжение)





Весьма часто продольная нагрузка бывает приложена не в центре тяжести поперечного сечения стержня, а с некоторым смещением (эксцентриситетом) относительно главных осей сечения (рис. 7.4 а).

а)   б)

 


Рис. 7.4

Применив метод сечений, обнаружим в любом поперечном сечении стержня продольную силу N = F и изгибающие моменты, равные относительно оси и относительно оси

Поэтому напряжение в любой точке поперечного сечения с координатами х и у определяется, как при осевом растяжении и изгибе в двух плоскостях, т. е. по формуле, аналогичной формуле (7.18):

(7.12)

 

Для сечений, имеющих выступающие угловые точки, экстремальные напряжения определяют по формуле

 

(7.22)

 

где Wx и Wy - моменты сопротивления относительно осей X, Y.

В сечении, показанном на рис. 7.4 б, наибольшие напряжения будут в точке Е, так как здесь суммируются растягивающие напряжения от центрального растяжения и растягивающие напряжения от изгиба в двух плоскостях:

(7.23)

 

Наименьшие (в алгебраическом смысле) напряжения будут в точке D:

(7.24)

 

При этом они могут получиться как растягивающими, так и сжимающими.

Условие прочности по растягивающим напряжениям имеет вид

 

(7.25)

 

Если точка приложения силы находится на одной из главных осей сечения, например, на оси у, то предыдущая формула упрощается:

 

(7.26)


При произвольной форме поперечного сечения для определения положения опасных точек необходимо найти положение нулевой линии. Уравнение нулевой линии получим, приравняв напряжение нулю:

(7.27)

где x 0 и y0 - текущие координаты точек нулевой линии.

 







Дата добавления: 2014-11-10; просмотров: 1074. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия